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Abstract

This paper studies algorithms based on an incremental dynamic programming abstraction
of one of the key issues in understanding the behavior of actor-critic learning systems. The
prime example of such a learning system is the ASE/ACE architecture introduced by Barto,
Sutton, and Anderson (1983). Also related are Witten’s adaptive controller (1977) and
Holland’s bucket brigade algorithm (1986). The key feature of such a system is the presence
of separate adaptive components for action selection and state evaluation, and the key issue
focused on here is the extent to which their joint adaptation is guaranteed to lead to optimal
behavior in the limit. In the incremental dynamic programming point of view taken here,
these questions are formulated in terms of the use of separate data structures for the current
best choice of policy and current best estimate of state values, with separate operations used
to update each at individual states. Particular emphasis here is on the effect of complete
asynchrony in the updating of these data structures across states. The main results are
that, while convergence to optimal performance is not guaranteed in general, there are a
number of situations in which such convergence is assured. Since the algorithms investigated
represent a certain idealized abstraction of actor-critic learning systems, these results are not
directly applicable to current versions of such learning systems but may be viewed instead as
providing a useful first step toward more complete understanding of such systems. Another
useful perspective on the algorithms analyzed here is that they represent a broad class of
asynchronous dynamic programming procedures based on policy iteration.
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1 Introduction

1.1 Overview

The purpose of this paper is to present some results in the theory of incremental dynamic pro-
gramming (Watkins, 1989), which, in its general form, combines elements of the theory of dynamic
programming with features appropriate for on-line learning in the absence of an a priori model
of the environment. An excellent discussion of this approach is provided by Barto, Sutton, and
Watkins (1989), who point out that it may be regarded as a direct method of adaptive control.
Another investigator who has emphasized the potential role of dynamic programming-based strate-
gies in biological and artificial learning systems is Werbos (1987), who has used the term heuristic
dynamic programming for his approach.

The analysis presented here was inspired by the desire to gain an analytic understanding of
the behavior of actor-critic learning systems, which consist of two jointly adaptive modules. One
module, called the actor, implements the current policy but also learns to improve its choice of
action in order to optimize the reward provided by the other module, which is called the eritic.
The reward provided by the critic is intended to represent an estimate of the expected long-term
external reward, but the critic must also adapt in order both to improve the accuracy of its estimate
given the current policy and to keep up with the ever-changing policy as the actor learns. The
prime example of such a learning system is the ASE/ACE architecture used in the pole-balancing
controller of Barto, Sutton, and Anderson (1983). Other algorithms that are related are Witten’s
(1977) adaptive controller and Holland’s (1986) bucket brigade algorithm. Sutton (1984; 1988)
appears to be one of the first to call attention to a common basis for these algorithms.

One important question that remains to be answered for such a learning system is the effect of
asynchronous adaptation of the actor and critic modules at individual states (or state-action pairs,
as appropriate). Here we consider a simplified abstraction designed to address this kind of issue in
an idealized sense. In particular, we ask: What happens if the actor and critic are updated state
by state in no particular order? Will such joint incremental adaptation always succeed at finding
optimal policies, or can it sometimes fail? Ignored here are a number of important additional issues
that also must eventually be addressed in order to gain a full understanding of existing actor-critic
algorithms, including problems of dealing with unknown stochastic environments through on-line
interaction. Here we simply assume that all transition probabilities and expected rewards can be
determined exactly from interaction with the initially unknown environment. This includes as a
special case the situation when all transitions and rewards are deterministic. Another simplifying
assumption we make is to consider arbitrary sequences of application of certain one-state-at-a-
time operators to actor-critic systems without regard for how those states come to be visited by
the learning system. Alternatively, the analysis presented here can be viewed more as involving
a model-based approach, as discussed by Barto, Bradtke, and Singh (1991). In fact, the closest
learning algorithm in the literature to which the results to be obtained here potentially apply is
the Dyna-PI algorithm of Sutton (1990; 1991).

While the investigation reported here was motivated by the desire to understand certain types
of learning system, an entirely different point of view may be taken. In particular, the results
obtained here may be viewed as providing alternative off-line algorithms for performing dynamic
programming computations on parallel processing machines with asynchronous communication be-



tween processors, the main issue being the extent to which the final result obtained is independent
of the precise order in which updating occurs among processors.’

Many of the results proved here first appeared in summary form in a short workshop paper

(Williams & Baird, 1990).

1.2 Incremental Dynamic Programming

The theory of dynamic programming provides a general framework within which to define, and
sometimes to solve, sequential decision tasks, in which an appropriate sequence of actions must
be chosen in order to receive optimal cumulative rewards over time. In general, the dynamic
programming approach involves the use of a state-space dynamical system representation together
with a space of possible control actions to be taken at each state. The theory is intended to provide
computational tools for helping to determine a closed-loop control law, or policy, specifying the
particular choice of action to be taken as a function of system state in order to perform optimally
over time. The cornerstone of the dynamic programming approach is the optimality principle,
which essentially states that, for any optimal sequence of actions from a given initial state, the
subsequence of actions obtained by deleting the first action must be optimal when starting from
that next state. This is used to decompose the problem of determining an optimal sequence of
decisions into a recursive form involving a one-step optimal decision problem together with another
multi-step optimal decision problem. A important ingredient of this computational approach is
the use of an evaluation function, or value function, assigning to each state the real number
representing the value of the specified objective function when the system is started in that state
and the optimal policy is used. In this paper we will refer to this particular mapping from states
to real numbers as the ideal evaluation function, reserving the more general term for functions
which may differ from the ideal. These more general evaluation functions may be viewed simply
as estimates of the ideal, and they play a role similar to that of static evaluation functions in
artificial intelligence game-tree search algorithms.

The standard dynamic programming formulation assumes the existence of a complete model
of the system, including the effect of actions on system state. Combining elements of this theory
with issues associated with on-line learning in the absence of an a priori system model has led
to an approach Watkins (1989) has called incremental dynamic programming. As pointed out by
Barto, Sutton, and Watkins (1989), this approach can be viewed as representing a direct method
of adaptive control, in contrast to the more obvious indirect method of alternating the fitting of
a model to the system in question with the use of a dynamic programming analysis of the most
recent model. The use of incremental dynamic programming methods actually allow the creation
of on-line learning systems that operate with reasonable efficiency and fall somewhere between
these two extremes (Sutton, 1990; 1991; Peng & Williams, 1992; Moore & Atkeson, 1992).

The function of the two modules in an actor-critic learning system can be described quite
simply from a dynamic programming point of view: The actor module implements the current
policy and the critic module represents the current value function. In this paper we assume that
table-lookup representations are used for both modules and we investigate the result of jointly

THowever, we do not actually treat the completely asynchronous case here since the results actually obtained
are based on the assumption that there are never two or more simultaneous updates, We conjecture that our results
carry over to this more general asynchronous update case but we have not verified this.



updating these data structures using certain specific incremental algorithms naturally derived
from conventional dynamic programming. In particular, we study several incremental approaches
based on policy iteration.

1.3 Organization of The Remainder of This Paper

Sections 2 and 3 are intended to provide the conceptual foundation on which the rest of this paper
rests. In particular, Section 2 contains a brief introduction to the mathematical formulation of
Markov decision tasks, including discussion of value functions and the Bellman equation. Section
3 introduces a set of one-state-at-a-time and one-state-action-pair-at-a-time update operations out
of which various existing dynamic programming algorithms can be constructed, and which can also
be combined in potentially novel ways. In particular, it is observed that certain at least roughly
systematic orderings of these operations correspond to asynchronous approaches to policy iteration
and value iteration that are known to converge to solutions to the underlying Markov decision task
in the limit. This section also introduces a number of additional definitions and proves several
fundamental results to set the stage for the original material appearing in subsequent sections.

It is in Sections 4, 5, and 6, where the generally new results are to be found. The primary focus
in Section 4 is on convergence and non-convergence results using the same operators introduced
in Section 3, while Section 5 introduces some new operators and establishes some additional
convergence results for these. Section 6 establishes still more convergence results, one using a
combination of operators not considered in the earlier sections and another based on recent work
of Singh and Gullapalli (1993).

Finally, in Section 7 the potential significance of these results is discussed and we observe what
future directions might be useful for this theory.

2 Mathematical Preliminaries

Here we give the mathematical formulation of the type of problem addressed in this paper and
introduce appropriate definitions and notational conventions. We also summarize some standard
computational strategies from the theory of dynamic programming and describe additional ele-
mentary results relevant to the incremental point of view adopted here.

2.1 Markov Environment

We take as given a Markov environment, or controlled Markov chain, having a finite set of states
X and a finite set of actions A, which, for simplicity, is assumed to be the same for all states.
For any finite set S we denote its cardinality by |S|. We let f(x,a) denote the randomly chosen
successor of state x when action @ is chosen. The behavior of this random next-state function is
determined by the transition probabilities p, = Pr{f(z,a) = y} for z,y € X and a € A. We
also assume that associated with each choice of action a at each state x is a randomly determined
immediate reward r(z,a), with R(z,a) = E{r(z,a)} denoting its expected value.

In general, a non-randomized policy is a function 7 assigning to each possible history of states
and actions a choice of action to be used at the current time. Of special importance here are
stationary policies, which select actions according to the current state only. Thus the set of



stationary policies can be identified with AX = {7 : X — A}. Similarly, the set of value functions
is RN = {v: X — R}, where R denotes the real numbers.

2.2 Total Expected Discounted Return

The results presented here are all based on the use of a discounting parameter v € (0, 1), which is
used to define a measure of performance on policies as follows. For any policy 7, define v™ € R,
the total expected discounted return (or just the return) for =, to be that value function assigning
to state x the quantity

()= B{ 3 a0, al0) | 0 = o}

where 2(0),z(1),z(2),... is a random sequence of states determined by x(0) = z and z(t + 1) =
flz(t),a(t)) for each t > 0, and a(0),a(l),a(2),... is the corresponding sequence of actions,
each selected according the specified policy 7. When 7 is a stationary policy this simply means
that a(k) = w(x(k)), but this definition also applies to nonstationary policies, where a(t) may
depend on additional information retained over the history of operation of the controller, such
as the past states x(0),z(1),...,z(t) visited, the past actions a(0),a(l),...,a(t — 1) taken, and
the current time index t. In general, this dependence may even be stochastic, in which case one
has a randomized policy. The factor v determines the relative value of short-term and long-term
rewards when combining rewards over long time periods.

2.3 Ideal Evaluation Function and Optimal Policies

Define a partial order relation on value functions by v < v’ if and only if v(z) < v'(x) for all
x € X. An optimal policy is one for which the return is maximal at each state. With v* denoting
the ideal evaluation function, or the return from any optimal policy, it follows that v™ < v* for
any policy 7 (including nonstationary or randomized policies). Clearly v* is unique if there are
any optimal policies. In fact, it is easy to show that an optimal policy exists and that there are
stationary optimal policies (e.g., Ross, 1983; Bertsekas, 1987).

2.4 Markov Decision Task

For purposes of this paper we define a (stationary, finite) Markov decision task, to be a 5-tuple
(X, A,r, f,7) consisting of a finite state set X, finite action set A, stationary random reward func-
tion r, stationary random transition function f, and discount parameter . As discussed earlier,
we adopt the assumption throughout that all transition probabilities and expected rewards can
be determined exactly when needed. There is no problem with this if we adopt the asynchronous
off-line computation point of view. In an on-line learning situation this corresponds to the unre-
alistic assumption that these probabilities and expected rewards can be determined directly from
interaction with the environment, which is reasonable only in the special case that the transition
function f and reward function r are deterministic.



2.5 One-Step Lookahead Values
For given v € RY, 2 € X, and a € A, define
L(z,a) = EA{r(z,a)+yvo(f(z,a))}
= R(z,a)+7 ) p,o(y).

yeX

This quantity represents a one-step lookahead value, or the expected reward that would be received
if, starting in state x, action «a is selected, giving rise to an immediate reward of r(x, a), and then
the process terminates with an additional reward of yv(f(x,a)).

Some important elementary results from the theory of dynamic programming (see, e.g., Ross,
1983, or Bertsekas, 1987) that we will need are given by the following.

Proposition 2.5.1 For any stationary policy w,
v™(z) = L (z,7(z))
for all x € X. Also, a value function v satisfies the Bellman equation
v(x) = Iglea,j([/v(:l},a) Vee X
if and only if v =v*.
We also note the following.

Lemma 2.5.2 (Lookahead Monotonicity) For any v,v' € R*, v > v’ implies L'(z,a) >
LY (z,a) for any x € X and a € A. Also, if v(z) > v'(z) for all x € X, then L*(x,a) > L (z,a)
for any x € X and a € A.

Proof.
L'(w,a) = R(z,a)+7 ) peyv(y)
yeX
> R(z,a)+7 ) pi,v'(y)
yeX
= Lvl(x, a).
This proves the first part. The argument for the second part simply involves making the inequality
strict. L

Another elementary result that we will use later is the following.

Lemma 2.5.3 (Less Than v* Lemma) If v < v*, then L¥(z,a) < v*(x) for any 2 € X and
a € A. Also, if v(z) < v*(x) for all x, then L*(x,a) < v*(z) for any x and a.

Proof. First note that LV (z,a) < v*(z) for any = and a. This is true because the left-hand
side is the return at « from the (possibly nonstationary) policy consisting of taking action a at the
first step and following an optimal policy thereafter, and this return cannot exceed that obtained
by following an optimal policy. The two parts then follow from application of the corresponding
parts of the Lookahead Monotonicity Lemma (2.5.2).



2.6 Distance Between Value Functions

Throughout this paper, distances between value functions are based on the supremum norm, so
we define
[ =o'l = [ = v']|o0 = max |v(z) — v'(z)|
zeX

for any v and v’ € RY.

3 Incremental Dynamic Programming Formulation

We now build on the preceding definitions, notation, and observations and show how incremental
dynamic programming algorithms for actor-critic systems can be viewed in terms of application
of certain operator sequences. In particular, this section focuses on incremental strategies for
performing policy iteration and value iteration.

3.1 Formalization of the Actor-Critic Architecture

We regard the internal state of an actor-critic system as simply an ordered pair (7,v) € A% x RX.
Whatever learning algorithm is used to adapt the actor is considered to modify the stationary
policy 7w, while learning in the critic alters the value function v. With the system initialized to
some internal state (7o, vp), our interest is in analyzing properties of the succession of internal
states that result from applying some particular learning algorithm (i.e., sequence of operators).
In particular, we are concerned with the question of whether the system will eventually learn to
perform optimally.

3.2 Local Backup Operators
For each z € X and 7 € A¥X, define the operator BT : RY — R¥ by

- L (x,n(x fy==x
Biv(y) :{ U(y() ) otiylerwise.

That is, BJv is the value function obtained from v by replacing v(z) by the one-step lookahead
value along m. Also, for each z € X, define the operator B, : AX x R*¥ — AX x RX by

B.(7,v) = (7, BJv).

We refer to operators of either form as local backup operators.

3.3 Local Policy Improvement Operators
For each € X, a € A, and v € R, define the operator I, : AX — AX by
a ify==x

I w(y) = and L(z,a) > L'(z,x(x))

7(y) otherwise.

6



Also, for each z € X and a € A, define the operator I, : AX x RX — A% x RX by
Lpo(m,v) = (I} ,7,0).
In addition, for each € X and v € R¥, define the operator IV : AX — AX by

a ify=ux
Dw(y) = and LY(z,a) = max,ea LY (2, a)
7(y) otherwise,

where it is understood that some method is used to choose among several equal candidates for
giving the maximum one-step lookahead value.? Also, for each x € X, define the operator I, :
AX x RY = AX x RX by

I (7,v) = (I 7, v).

We refer to any of these operators as local policy tmprovement operators. The operator I,
alters the policy at state 2 by comparing the lookahead values for the current policy and for action
a while [, considers all possible actions. As we discuss below, [, can be viewed as representing
a step in both the value iteration and policy iteration procedures. The reason we also wish
to consider the I, operators is that they represent an even finer-grained incrementality, thus
conforming to the overall spirit of our approach. In some applications, particularly when there
are a large number of actions, it may be difficult or computationally infeasible to compare all
possible actions. Related to this is the possibility that the need for fast reaction may preclude
consideration of all but some small number of alternative actions at any one time. Clearly, I, can
be expressed as the composition of the operators I, , with @ running over A. Also, there is always
one particular I, operator that gives the same result as I, on any particular argument.

Note that both the I, , and I, operators make changes to a policy based on comparison of the
lookahead values of two or more actions. In some situations it may not be realistic to assume that
even this is possible. Later we will introduce additional operators which do not require comparing
two or more lookahead values in this way but instead involve comparing a lookahead value with
the current value for a state.

3.4 Convergence to Optimality Under Asynchronous Operator Ap-
plication

The results presented in this paper all deal with problems having the following general form.
We assume given a finite set S of operators mapping AX x R¥ — A% x RX, and we apply
a sequence 17,75, ... of these operators in succession, beginning with an initial policy-value pair
(70, v0) € AX x RX. This gives rise to a sequence of policy-value pairs (g, vg), (71, v1), (72, v2), - - -,
where (g, vg) = Ti(7g—1,v5-1) for all & > 0. We adhere to this indexing convention throughout
the remainder of this paper.
For any such set S, we make the following definitions. Given a finite sequence ¥ = (11,75, ...,T,)

of operators from a set S, we say that ¥ is ezhaustive (with respect to S) if {11,15,...,T,} =8,
or, in other words, if every operator in & appears at least once in X. In addition, define cs(¥)

?The precise method used for resolving ties makes no essential difference.



to be the maximum number of disjoint contiguous exhaustive subsequences into which ¥ can be
partitioned.

A slight generalization of this idea will also be necessary, but since we intend to apply this more
general idea in only one situation, we define it only for this specific case.® Given a set of operators
indexed by states x € X, we apply the adjective X-ezhaustive to any finite sequence of these
operators in which all possible states are represented. Then we define cx(X) to be the maximum
number of disjoint contiguous X-exhaustive subsequences into which ¥ can be partitioned.

Given any infinite sequence ¥ = (71,7T3,...) of operators from &, we consistently use the
notation ¥, to mean the finite sequence (T4,75,...,T,) consisting of the first n elements. We
then call an infinite sequence ¥ of such operators S-forever if cs(X,) — oo as n — oo. We have a
corresponding of notion of X-forever using cx. Equivalently, such a sequence is S-forever if every
operator in § appears infinitely often, and it is X-forever if there are infinitely many operators
having index z for each z € X. Also, when we speak of a forever sequence of operators from S
we mean an S-forever sequence, and we say that a result holds under asynchronous application of
(the operators from) S if it holds for any forever sequence of operators from S.*

Finally, our primary objective in this paper is to identify situations when the limiting behavior
of the system is optimal, which we formulate as follows. Let us say that a sequence of policy-value
pairs (7g, vo), (71,v1), (72, v2), . .. converges to optimality if lim;_., v; = v* and there exists M such
that every =; is optimal when ¢ > M.

3.5 Computation of the Return for a Stationary Policy

Since v™(x) = LY (z,7(z)) for all states « when 7 is a stationary policy, v™ can be computed by
solving the system of | X | linear equations

o7 () = Rz, w(x)) +7 2 prf o7 (y):

yeX

This system can be solved directly using standard linear algebra techniques, but there are other
approaches of more relevance in incremental dynamic programming which involve starting with
an arbitrary value function v and then iteratively updating the values {v(z) | # € X} by replacing
each by L'"(z,n(z)). If one complete set of these values is determined in terms of an earlier
complete set (i.e., updating occurs synchronously), then this amounts to a Jacobi method for
solving this system of linear equations. If, instead, these values are updated one at a time in
cyclical fashion, always using the most recent values of all other states, this amounts to a Gauss-
Seidel method. Here we note that even more asynchrony of updating is allowable.

First, we make a general definition that we will need both here and later. Let T}, : RY — R¥
be an operator indexed by € X and let v < 1. We call T}, a coordinatewise vy-contraction if, for

3A general definition would have the following form: Given a mapping ¢ : 8 — 7, a finite sequence of operators
from § is p-ezhaustive if the image under ¢ of the elements of the sequence equals 7, Specializing to the cases
where ¢ is the identity map or the mapping assigning to each operator its index yields the two forms we use here.

4Note that we do not allow two or more operators to be applied simultaneously, so the notion of asynchrony used
here is more restrictive than one might use in the sense of parallel computation. We conjecture that all results given
here for this more restrictive notion of asynchrony are, in fact, true even if simultaneous updating were allowed,
but we have not checked this.



any v and v’ in RX,
Tev(y) = Tov'(y)] < flo =o' (1)
for y # x and
T0(e) - T ()] < Ao — . )

Lemma 3.5.1 (Local Backup Lemma) For any x € X and 1 € AX, the local backup operator
BI is a coordinatewise y-contraction.

Proof. Since Bl does not change the value at any state y # x, (1) is trivially satisfied. To
check (2), let 7(z) = a. Then

BTv(z) — B™'(z) = L%x,a)— LY (z,a)
= R(z,a)+~ E piyv(y) — R(z,a) —~ Z piyv’(y)

yeX veX
= Y o) — )],

yeX

SO

|Biv(z) — Biv'(z)] < Vgpiylv(y)—v'(y)l

< oy Do Pkl =
yeX

= Ao -

Lemma 3.5.2 (Sequential Contraction) Let vo,v), € RY and let ¥ = (T, Ty,...) be a se-
quence of operators indexed by X such that each is a coordinatewise vy-contraction. Define vy, =

Trvi—1 and vy, = Tyvy_y for all k > 0. Then

lor = vpll < 4% oo — v,

and, if ¥ is X -forever,

v, — v || = 0 as n — oo.
[vn — vl

Proof. The second result clearly follows from the first. We show the first by induction on the
value of cx(X,). It is trivially true for cx(¥,) = 0 since each operator cannot increase distance.
Now let ¢x(X,) = k. This means that ¥, can be partioned into a sequence whose cx-value is
k — 1 followed by an X-exhaustive sequence. The result will thus follow by induction if we prove
that application of an X-exhaustive sequence of these operators reduces distance by a factor of ~.
That is, it suffices to prove the result for cx(¥,) = 1.

Therefore, assume that ¥, is exhaustive. For notational simplicity, introduce the quantities
di(z) = |vi(xz) — vi(z)| and D; = max,d;(x) = ||jv; — vi|| for ¢ > 0. Now select a state x and

9



let k£ be the largest index in the sequence such that 1 < k < n and T} is indexed by z. By the
coordinatewise ~-contraction property,

de(w) = Jou(x) — vi(@)] < Yllvis — Vi, | = 7Dics < D,

It follows further that di(x) < di(z) < vDy for any &' with & < k' < n since each T}/ is indexed
by a state other than x. Thus, in particular, d,(z) < yDy. Since this is true for any state z, it
follows that

D, = mEan(:E) < ~Dq.

This establishes the result for the case cx(¥,) = 1 and completes the proof. L

In light of this result, we will say that any sequence of X-indexed operators satisfying the
conditions of this lemma, and hence its conclusions, satisfies the sequential contraction property.
The following is then an immediate consequence of the Local Backup Lemma (3.5.1).

Lemma 3.5.3 (Sequential Backup Contraction) Any sequence of operators from {BT | x €
X, m € AX} satisfies the sequential contraction property.

Theorem 3.5.4 (Asynchronous Return Computation) If {B, | x € X} is applied asyn-
chronously to any arbitrary (7o, vo), then v, — v™ as n — oo.

Proof. Consider the two sequences of value functions arising from applying this sequence of
operators to vy and v™. Since v™ is fixed under any of these operators, the latter sequence has all
elements equal to v™. Since the sequence of operators satisfies the sequential contraction property
and is X-forever, it follows that |[v, — v™]| — 0 as n — oo.

3.6 Policy Iteration

The policy iteration procedure determines an optimal policy by starting with any initial policy
7o and repeating the following step: For policy 7, compute its return v™ and then define policy
Tr+1 to satisfy

L™ (z, 7py1(x)) = max L™ (z,a),

for each z, with the understanding that m11(2) = 7p(x) if 74(2) is one of several candidates for
giving the maximum lookahead value.® The process terminates as soon as mi(x) = m¢41() for all
x.

The justification for this is the following standard result, which is a consequence of the opti-
mality principle and which we cite without proof.

5The only reason we insist on this tie-breaking method is to simplify the termination test.
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Proposition 3.6.1 (Policy Improvement) Let v € RY, 7' € AX. Then L""(z,7'(z)) >
LV (z,7(2)) for all x € X implies v™ > v™. If, in addition, LV (z,7'(x)) > L (z,7(x)) for some
z, then v™ (z) > v™(z).

Of special interest to us here is that we can use the Asynchronous Return Computation Theo-
rem (3.5.4) to define a sequence of operators to be applied to a given initial (7q, vo) that essentially
carries out the policy iteration strategy. To do this, we first observe that it is only necesssary to
compute v” to a sufficiently close approximation in the policy iteration procedure. To this end,

we formulate a general definition and then prove a result that will be useful later as well. For any
v € RX, let

6% = min [{ma}L”(;v,a) — L¥(z,a) | a € A} - {0}] ,
[e1S

and let

6" = miné,.

reX

That is, 67 is the smallest nonzero difference between the lookahead value at state @ when using
an action giving the largest lookahead value and when using any other action, while 6" is the
smallest such nonzero difference taken across all states.

Lemma 3.6.2 (Close Enough Lemma) Let v,v' € RY,z € X. Let a € A be such that
L¥(x,a) = maxaes LV (2, ) and let o' € A satisfy LY (x,a') > LY (x,a). Then

v

,_,/<_1'
o=l < £

implies L'(x,a") = L¥(x,a).

Proof.

0<L%z,a)— L’(z,d") L(z,a) — L”'(;v, a) + LU,(SL’, a)— L'(z,d)

< LY(z,a)— LU,(ZL’, a) + L”’(:L‘, a')— L¥(z,d")

< |L%(z,a) — LY (z,a)| + |L" (z,d') — L*(z, d’)|
< 2yl =V

< 6.

Since 6 is the minimum nonzero value of L*(x,a)—L"(xz,d’), it follows that L¥(z,a)— L"(z, da’)

= 0.
0

We will say that action a is greedy for value function v at state x if L”(z,a) = max, L (z, «).
The Close Enough Lemma simply says that if v’ is sufficiently close to v, any greedy action for v’
must also be greedy for v.

Using the Close Enough Lemma, we see that the same policy will result from one complete
step of policy iteration if only a sufficiently close approximation to the return is computed. In
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particular, by the Sequential Backup Contraction Lemma (3.5.3), starting with policy = and value
function v, it is sufficient to apply any sequence ¥ of local backup operators satisfying

v

1)
35 P — v < 5 3)

By the Close Enough Lemma (3.6.2), applying policy improvement will then yield the same policy
as 1f the return had been computed exactly.

Furthermore, improvement of the policy at each state will clearly occur under application of
any exhaustive sequence of operators from {/,, |z € X,a € A}. Thus we have established the
following result.

Theorem 3.6.3 (Policy Iteration Using Asynchronous Return Computation) Suppose
that a sequence of operators from {B, |z € X} U {l,. |z € X,a € A} of the following form is
applied to a given (wg,vo). This sequence consists of alternating indefinitely operator sequences of
the following two types:

i. Any finite sequence ¥ of operators from {B, | x € X} satisfying (3); and
ii. Any exhaustive finite sequence of operators from {I,, | v € X,a € A}.

Then the resulting sequence of policy-value pairs converges to optimality. Ll

3.7 Value Iteration

The wvalue iteration procedure determines an optimal policy by first computing v*. Any policy =

for which

L (z,7(z)) = max L (z,a)

will then be an optimal policy. That is, an optimal policy is determined by choosing for each x an
action giving the maximum lookahead value when v* is used to determine the evaluation of the
successor states for x.

The computation of v* can be carried out using techniques analogous to some of those described
above for determining the return v™ for a given policy. In this case, what is sought is the unique
solution to the system of | X| nonlinear equations

v*(z) = max {R(:{:, )+, Piy’v*(y)} .

«€ yeX

The value iteration procedure for solving these equations involves starting with an arbitrary
value function v and then iteratively updating the values {v(z) | « € X} by replacing each by
max, L’(x,a). It is traditional to carry this out synchronously or by sweeping through the states
cyclically, but more arbitrary ordering is also permissible (Bertsekas, 1987; Bertsekas & Tsitsik-
lis, 1989). This result also serves as the starting point for analysis of the Q-learning algorithm
(Watkins, 1989). Here we restate this result in our terms and give a proof.
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Before doing this, however, we introduce another local operator on value functions. Since this
operator is simply a projection onto the value function coordinate of a certain composition of local
operators already defined, it is this composition that we will tend to emphasize later. However,
since it can be defined without any explicit reference to a policy, it is useful to have this version
available as well.

For each z € X define the local maz-backup operator B : RX — RX by

. max, LY(z,a) ify==x
BI'v(y)—{ (,0) 1y

] v(y) otherwise.

That is, Blv is the value function obtained from v by replacing v(z) by the maximum one-step
lookahead value along all actions. Clearly, B,I,(7,v) = (7', Bfv) for an appropriate #’.

Lemma 3.7.1 (Local Max-Backup Lemma) For any x € X, the local maz-backup operator
B s a coordinatewise y-contraction.

Proof. Since Bf does not change the value at any state y # x, (1) is trivially satisfied. To
check (2), choose a,a’ € A so that

LY(z,a) = max L' (z, «)

and

LU’(:L‘, a') = max L’ (z,a).

Suppose that L*(z,a’) < L*(x,a). Then
Lvl(x,a) < maXLvl(.r,oz) = LU,(CE,CL,),
SO
|Biv(z) — Byo'(e)] = |L¥(z,a) — LV (z,d)]
L(z,a) — Lvl(x, a')
L¥(z,a) — LU’(ZL‘, a)
Yo =2

IA A

by the Local Backup Lemma. A symmetrical argument establishes the result for the case when
L'(z,a) < LY (z,d'). L]
The following is an immediate consequence.

Lemma 3.7.2 (Sequential Max-Backup Contraction) Any sequence of operators from
{B: | x € X} satisfies the sequential contraction property. Ll

Theorem 3.7.3 (Asychronous Value Iteration) Asynchronous application of the set of oper-
ators {ByI; | x € X} to an arbitrary (7o, vo) yields convergence to optimality.

13



Proof. We first study the behavior of the resulting sequence of value functions. Since B, I.(7,v) =
(7', BXv) for some 7', it is sufficient to consider a corresponding sequence of operators in which
each operator B[, is replaced by B, with this sequence applied to the initial value function vy.
Consider the effect of applying this sequence of operators to vy and to v*. Since v* is fixed un-
der application of any B}, it follows from application of the Sequential Max-Backup Contraction
Lemma (3.7.2) that v, — v* as n — oo.

Thus convergence to optimality follows once we can show that there exists M such that all the
policies 7, are optimal when n > M. Select N so that n > N implies

v*

|vn — 0| < 2
This is possible since v* = lim,_.. Then, for each z, let N, > N be an index such that
Ty, = B:l,. The existence of such indices is guaranteed by the assumption that each such
operator appears infinitely often. Finally, let M = max, /V,.

Now fix state z and let a* represent an optimal action at x, so that L (z,a*) = max,es LV (, a).
Suppose that 7,(x) = a’ for some n > M. Since 7,(x) can only have resulted from application
of I, at some earlier step m, it must be that L""(x,a’) = max,es L' (x,a) > L' (x,a*) Further-
more, N < m < n. But then, by the Close Enough Lemma, L (z,a’) = L*" (z,a*), so, in fact,
a' is an optimal action at x. Since this is true for all , we see that, for this choice of M, all the
policies 7, are optimal when n > M. L

4 Results Involving More General Sequences of Local
Backup and Policy Improvement Operators

The last two theorems can be viewed from the point of view of actor-critic systems as describing
particular situations in which certain forms of coordination are enforced between the adaptations
performed in the actor and critic modules. The asynchronous value iteration theorem corresponds
to the situation when the critic is modified via backup for any state only after the actor has
been updated to reflect the currently best action for that state, while the policy iteration theorem
corresponds to the situation in which the critic is always updated to reflect (a sufficiently close
approximation to) the actual return from the current policy in use by the actor. Roughly speaking,
for value iteration the actor must always reflect the latest changes to the critic, while for policy
iteration the critic must always reflect the latest changes to the actor.

Since these two extremes of coordination between the actor and critic give rise to convergence
to optimality, it seems reasonable to ask whether a less tight coupling between these two modules
might not also give rise to such convergence. From the point of view of incremental learning, it
would certainly be preferable not to have to wait until an accurate approximation of the value
function is available before making changes to the policy. Incremental use of the value iteration
approach is less problematical when it can be assumed that it is reasonable to always apply a
maximization computation over all possible actions every time an action must be selected; indeed,
this is the basis of Watkins’ Q-learning approach (1989). Nevertheless, it might be preferable to
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allow the actor the option of immediately applying a cached choice of action without first doing any
comparison of alternatives, especially in extremely time-critical situations; if the critic is allowed
to adapt at these times, however, the value iteration approach is violated and the corresponding
convergence theorem is no longer applicable. The purpose of the rest of this paper is to explore
the extent to which less tight coupling between the operation of the actor and the critic can
also give rise to the desired convergence to optimality. That is, we examine the extent to which
other sequences of application of local backup and policy improvement operators also achieve such
convergence. In this section we focus specifically on sequences of operators from either the set
{Bes |z € X} U{l,u| 2z € X,a€ A} or the set {B, |z € X} U{l, |z € X}. Later in this paper
we introduce other similar operators and examine the behavior of sequences of these operators as
well. Recall that in all cases we consistently denote the k" operator by 7}, and the k" policy-value
pair by (7, vx) and adopt the numbering convention that (7, vy) = Th(7k—1,vk—1) for all k& > 0.

4.1 A Useful Technical Result

A technical result that we will aid us in several proofs throughout this paper is the following.

Lemma 4.1.1 (Non-v* Lemma) Let v’ € RX be given, with v’ # v*. Then there exists v € X
and € > 0 such that, for any v € R* with ||[v — /|| < ¢,
[07(2) = LY (2, a)| < [v"(z) = v'(z)[ — €

’

for all a € A satisfying L" (x,a) = max, L (z, a).

Proof. Let
—_ (o . ! .
@ = argmax [v*(y) — v'(y)],
so that
0" (z) — o'(2)] = [lv™ = o],
and let

Now let v be a value function satisfying |[v — v'|| < ¢ and let a be an action such that
a = arg max, L” (z,a). By the triangle inequality,

v () = L*(2, )| < [o"(2) = L (z,a) | + |L¥(z,a) = L*(z, a)]:

Since LV (z,a) = B*v'(z) and B*v*(z) = v*(z), the Local Max-Backup Lemma (3.7.1) implies
that the first term satisfies

[o"(2) = L (2, a)| < 4lo" = o'|| = 7[o"(2) = o'(2)],
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while the Local Backup Lemma (3.5.1) implies that the second term satisfies
L7 (2, a) = L¥(z,a)| < 7|]v" = o]l < 7e.
Therefore,

[0"(z) = L*(z,a)] < A|v™(z) = o'(x)[+ e

4.2 Results For Arbitrary Sequences

Theorem 4.2.1 (Convergence Implies Optimality) Suppose that a forever sequence of oper-
ators from {B, | v € X} U{l.. |z € X,a € A} is applied to some (7, vo). Then, if lim;_. v;(x)
exists for each v € X, the resulting sequence of policy-value pairs converges to optimality.

Proof. Let vo = lim;_o v;. Suppose that v, # vx. Let x and & be as guaranteed by the
Non-v* Lemma (4.1.1) applied to vs. Pick N so that n > N implies

§ue
||vn — Voo|| < min ( ZZI’Y ,5) ,

and then pick £ > N so that Ty, = I, ,, with a greedy for v.,. Let [ > k be such that 774, = B,.
By the Close Enough Lemma, 7;(x) must be a greedy action at & for v., since it must have looked
no worse than a using a value function within 6~ /(27v) of v,. Thus the Non-v* Lemma (4.1.1)
allows us to conclude that vi41(x) = Bl'v(z) = L% (x,m(x)) satisfies

|07 (2) = v ()] < [07(2) = veo ()] — ¢,
or
[07(2) = voo ()] — [v7(7) — w142 ()] > ¢,
By the triangle inequality we also have
[07(2) = Voo ()] < |v™(2) — viga ()] + [V () — ves()],
so
0141 (2) = veo ()] 2 [07(7) = Voo ()] = [07(2) — V142 ()] > .

Since [ + 1 > N, this is a contradiction, and we thus conclude that v, = v*.
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Furthermore, that the policies must eventually all be optimal follows from the Close Enough
Lemma, since eventually all v, will be within §°"/(2y) of v*. Thus any I, .« operator, with a*
optimal at x, applied beyond this point must set the policy at x to an optimal action, and any
changes in the policy at = occuring after this can only replace one optimal action with another.

[

This result can be used to establish convergence to optimality in a number of cases. Before ex-
amining some of these cases, we first observe that it is not true that applying each local backup and
policy improvement operator infinitely often guarantees convergence to optimality. The following
result is proved by giving examples where the resulting policy-value pairs cycle endlessly.

Theorem 4.2.2 (Convergence Counterexamples) For each of the following sets of operators
S and values of v, there exists a finite Markov decision task with that value of v, an initial
policy-value pair, and a forever sequence of operators from S, such that the resulting sequence of
policy-value pairs does not converge to optimality:

. S={B;|lzeX}U{lL|ze X}, 1/2<y<1

iW. S=1{B, |e € X}U{B. I, |z € X}, (WVb—-1)/2<~v<1
ii. S={I,B, |z X}, W5-1)/2<~v<1

. S={lL,B.,|r€X,ac A}, V5-1)/2<~y<1

v. S={B.L..|z€X,ac A}, (Wo—-1)2<~y<1

Proof. Case (i). Consider the example in Figure 1. Applying B; will do the assignment

(1) =1+ 1 1
, - — '
’ Ty "1
Performing an I3 operation then compares
3 142
L°(3,1) =1+~ I
11—~ 11—~

with | 59
. . a
LY(3,2) =3 = .
Since v < 1, both denominators are positive. Since v > 1/2, the first numerator is more than 2
and the second is less than 2. Therefore the first action appears better, so 7(3) « 1. Similarly,
doing a B, operation will perform the assignment

3 3
v(4 3 = .
v(4) — TS TS
Applying the Is operator then compares
1 1
LY(6,1) =1 =
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2, 1
1-y

Figure 1: Deterministic Markov environment for the first counterexample. At each state, action
1 causes a transition to the next state in a counterclockwise direction, while action 2 moves two
steps in that same direction. Immediate rewards are as indicated, 1 when action 1 is taken in any
state and 3 when action 2 is taken. By each state is shown the initial policy and value, respectively,
for that state.

1-y

Figure 2: Deterministic Markov environment for the second counterexample. At each state, action
1 causes a transition to the next state in a counterclockwise direction. At even-numbered states,
action 2 moves two steps in that same direction, while at odd-numbered states the effect of action
2 is identical to that of action 1. Immediate rewards are as indicated, 1 when action 1 is taken
in any state or action 2 is taken in an odd-numbered state, and 3 when action 2 is taken in an
even-numbered state. By each state is shown the initial value for that state. For this example the
initial policy is arbitrary.
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with 3 3
LY(6,2) =3 = .

The second choice is better, so 7(6) « 2. At this point, the configuration of values and policies

has rotated clockwise 1/6 of the way around. We can thus apply corresponding sets of operators
to continue rotating the configuration until it returns to its original form. An entire sequence of
24 operators to accomplish this is given by performing twice the following composition:

1, Bgls B3l B514 By 16 Bals By

Thus endless application of these 12 operators in this order will cause the value function to oscillate
between 1/(1 —v) and 3/(1 —v) at each state, so it never converges.

Case (ii). Consider the example in Figure 2. First note that at each odd-numbered state the
effect of both actions is identical, giving an immediate reward of 1 and causing a transition to the
same state. This means that [, will have at most a trivial effect on 7(n) when n is odd, so that
applying B, I, has the same effect on v(n) as simply applying B,, at these states.

Begin by applying Bglg. This compares

142 1 + 2~2
1 —~ 1 —~

with

3 3
l—~y 1—~
to determine 7(6) and then installs the larger value as v(6). Since v < 1, the numerator of the
first value is less than 3, so #(6) < 2 and v(6) « 3/(1 — 7). Next, applying B4l requires the
comparison of

L°(6,2) =3 + 7

142y 142y
L) =144 22

1 —~ 1 —~
with { 5_9
. — &y
L% (4,2) =3 = .
(4,2) ARy

Since v > (v/5 — 1)/2, the first numerator is greater than 4 — /5 and the second one is less than
4 —+/5, 50 7(4) « 1 and v(4) «— (14 27%)/(1 — 7). After this, applying Bs; makes the assignment

1
1—7'

_ 1

Applying Bsl; then has no effect. Applying Byl next sets

3 142
v(l) 1+~ = + 7.
1 —~ 1 —7
Finally, applying B, leads to
1
4 1 =
v(4) = L4y T



At this point the configuration of values has rotated clockwise 1/3 of the way around, and the
resulting policy is independent of the initial choice of policy. We can thus apply corresponding
sets of operators to continue rotating the configuration of values until it returns to its original
form. An entire sequence of 18 operators to accomplish this is given by the following composition:

By(Bs15)(B111) By(By 1) (Byly)
Be(Bsls)(Bs1I5) Bs(Bsls)( By 1)
By(Bi14)(BsI3) Bs(Byl,)(Bsls)

This includes all possible B, and B, I, operators, and the value function oscillates between 1/(1—+)
and (142v)/(1—~) for odd-numbered states and between 1/(1—+) and 3/(1—+) for even-numbered
states.

Case (iii). Note that in case (ii) the single operators B, for n odd can be removed without
changing the overall effect. Also note that when the single operators B,, for n even were applied,
the next operation done on that state was an [,,. If an extra I, were to be performed immediately
after each such B, the result would not be affected. Finally, note that the Markov environment
used for this example has no direct transitions from any state to itself. In this case the composition
1.B.1,.B, has an interesting property. The B.I, in the middle finds the best looking action and
stores the action and the backed up evaluation along it. The [, on the left has no effect since
none of the other states’ values have changed since the first /.. The B, on the right also has
no effect since it can’t influence what the immediately following I, does and since the next B,
will overwrite v(x) anyway. After deleting unnecessary individual B’s, changing the remaining
individual B’s into I B’s, and replacing BI’s with I BIB’s, the composition of operators used in
case (ii) is transformed into:

(12B3)(IsBs515Bs) (11 B11, B ) (12 By [, Ba ) (148414 By)
(I6Bs)(13B313B3)(15Bs15Bs ) (16 Bs I Bs ) (12 B2 12 By)
(14B4) (11 By Iy By )(Is B3 I3 Bs) (1, B4 1, B4) (Is Bs Is Bs)

This composition of operators has the same effect as in case (ii), but it consists entirely of 1. B,
operators, all of which appear at least once.

Case (iv). In general, applying [, is equivalent to applying the composition I, 4, Iy 0, - I14,,- If
there are no self loops, then inserting B, operators won’t affect the operation of the I’s. Therefore
1y, Bl o, By 1y g, Br composed with itself is equivalent to B,I,. Also, if the current policy at
x is ag, then I, ,, does nothing and I, ,, B, is equivalent to B,. If these substitutions are made
in the composition of operators given for case (ii), the resulting composition will be constructed
entirely out of I, , B, operators, with all appearing, and its effect will be the same.

Case (v). Once again, consider the composition of operators from case (ii). If the current
policy at any step of the process is a, then replace each single B, with B, I, ,, and replace each
B.1, with B.1; ., Byl; 4, Byl ,,,. When these substitutions are made for the operators used
in case (ii), the resulting composition will represent an exhaustive sequence of B, I, , operators,
and its effect will be the same.
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The first case gives a counterexample to the most general conjecture one might make concerning
convergence to optimality using arbitrary sequences of I, and B, operators, while the remaining
cases are counterexamples to other more limited conjectures one might have hoped to salvage after
discovery of the first counterexample. The second case shows that applying occasional backups
along actions not currently believed to be optimal can defeat the guaranteed convergence that
would otherwise be obtained when the asynchronous value iteration operators B, I, are used. The
third case shows that synchronizing the policy updates and the backups in the reverse order from
that used in asynchronous value iteration can thwart convergence. That convergence can fail in the
fifth case is interesting because one might have considered the use of such operators to represent
a reasonable finer-grained approximation to the asynchronous value iteration approach.

Now we return to the question of finding sequences of local backup and policy improvement
operators and initial policy-value pairs such that convergence to optimality is guaranteed. The
next two results will be useful for this. In order to state these results in complete generality, we
define a policy operator mapping AX x RY — AX x R¥X to be any such operator commuting with
projection onto RX. That is, P is a policy operator if P(7,v) = (7',v) for any v and 7 and for
some 7’. Examples are the operators I, and I, ,. Later we consider others.

Lemma 4.2.3 (Boundedness) Let (7, vg) be any policy-value pair and let P be any set of pol-
icy operators. Let v™* = max, vo(z), v™" = min, vo(z), BR™* = max,, R(z,a), and ™" =
ming , R(x,a). Then the sequence of policy-value pairs arising from application of any sequence of
operators from {B, | € X} UP to (o, vo) salisfies

min{vmin, 13—} < wi(x) < max {vmax i } (4)

-9 -y

for all x € X and for all + > 0.

Proof. We prove this by induction on ¢. First, (4) is clearly true for all « when ¢ = 0. Now
assume that (4) is true for all @ when ¢ = k. Pick a particular state x. If vgy1(2z) = vi(x), then
(4) holds trivially for ¢ = k 4+ 1. This covers all cases when Tjyq is not equal to B,. To examine
the remaining case, assume Ty = B,.

First consider the upper bound. Note that

ohn(z) = L%(z,m4(2))
R™* 4+ 7 max vr(y)
Rrax 4 ,_yvmaxl

IN

IN

If v™ax < Rmax /(1 — ~), it then follows that

Rmax Rmax

; ] <Rmax —
Uk_H(T?)_ +71—’Y 1_77

while if R™**/(1 —v) < v™* we conclude that

'Uk-}—l(-?j) S (1 _ ,_y)vmax + ,_yvmax — ,Umax‘
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Thus, in either case, vpp1(2) < max{v™* R™*/(1 —v)}.
We have a symmetrical argument for the lower bound, beginning with the observation that

ven(e) = L%(a,mile))

> R™+yminv(y)
> Rmin 4 ’yvmin.
When v™in > Rmin /(1 — ) this implies
Rumin pmin

'Uk—}—l(x) Z Rmin‘l”}/ — 7
l—vy 11—+

while R™2/(1 — ) > v™® implies
'Uk-}—l(x) Z (1 . "}/)‘Umin + ,_yvmin — vmin)

and we conclude that vgyi(z) > min{v™® Rmn/(1 — )},
Since x was arbitrary, this suffices to prove that (4) holds for all  when ¢ = k£ + 1. Therefore,
by induction, it holds for all > 0. 0

We can establish another interesting set of bounds on the limiting behavior of sequences arising
from repeated application of the local backup operators and other operators that affect only the
policy if we assume that each backup operator is applied infinitely often. For the proof of this
result we will make use a certain construction that is closely related to the action replay process
introduced by Watkins (1989; Watkins & Dayan, 1992) to analyze Q-learning.

Let there be given an initial stationary policy 7y, a sequence of states xy,z9,23,..., and a

*
sequence of actions ay, as, as,.... For any n we construct a nonstationary policy making use of the
first n states and actions in these sequences and maintaining an indexing variable that accesses
these sequences and decreases at each time step. Let K denote the current value of this indexing
variable. Initially, K = n. Then repeat indefinitely the following steps: When state z is entered,
find the largest value L. < K for which z; = z. If there is no such value, set K « 0 and apply
action mo(x). Otherwise, apply action a;, and set K « L — 1. Using this construction for each
n > 0 we obtain a sequence of policies mg, 71, 7, . . ..

For ease in stating the following result we use the notation B2, with a € A, to mean the same

thing as B] where 7 is any stationary policy such that =(z) = a.

Lemma 4.2.4 For the above construction, lel vo = v™ and define v, = Bi*v,_y for all n > 0.
Then v, = v™ for all n > 0.

Proof. We argue by induction. The base case is given, so we now suppose that vy = v for
. —_ a P a0 —_ a p 3 3
sime k. Then vy = le’:jrrll vk, S0 we want to show that v™+1 = Bzfﬂ vg. For x # xp4q, it is clear
that

v (2) = v(x) = Blktio,
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since 741 and 7 represent the same policy for all time steps as long as the initial state is not

Tgt1. Thus it remains to show that v™+1(z4) = Bgfill vk(zk1). But

) = B3 a(0,a0) [0 = o
= Bawnson) + B{ S 0).0(0) 20 = a0

t=1

— Rlewansn) + 5 50 E {30 (0,0 [0 = o)

yeX

Now since 741 is identical to 7y after the first time step, the expected value appearing in the sum
in this last equation is simply v™(y), so we have

vV (1) = L (@41, Gpgr)
= L"(2py1, ap41)

= B;T:j_'ll ’Uk(:lik+1).

O

We now use this lemma to establish our next result, which requires one further observation
and definition. Just as there are optimal policies, there are also pessimal policies, which give the
minimum total expected discounted return at every state. Define v# to be the return from any
such pessimal policy, so that v# < v™ for all policies 7 (including nonstationary and randomized
policies).

Theorem 4.2.5 (Limit Bounds) Let P be any set of policy operators and let B={B, | + € X'}
Suppose that a B-forever sequence of operators from {B, | x € X} U P is applied to an arbitrary
(wo,v0). Then the resulting sequence of value functions satisfies

v#(x) <liminfv,(z) <limsupv,(z) < v*(z)

n—0oo n—00

for all states x.

Proof. First note that, since B(w,v) = (7, Blv) and the policies arising in the sequence are
obtained from the application of arbitrary policy operators, it is equivalent to establish the conclu-
sion when one applies to any vy an X-forever sequence of operators from {B;T |z e X7 € AX}.

Thus we confine attention to sequences of this latter form, in which each operator is some
BT, and we adopt a corresponding indexing convention,® with the i'" operator being B7i, with
v; = Bliv; 4 for 2 > 0.

6Thus these indexes differ from those in the original sequence because the policy operators no longer occupy
positions in this new sequence.
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The proof is based on the observation that, for each n, v, approximates the return for a
particular nonstationary policy, with the approximation error approaching zero as n — oco. Each
such nonstationary policy arises from applying the construction given above, as follows. Given

the sequence of operators B!, B2, B7?, ..., extract the sequence of states x1, 3, 23,... and the
sequence of actions ay,az,as, ..., where a; = m;(x;) for all ©. We then use #/ to denote the nth

nonstationary policy resulting from this construction, and we arbitrarily set the initial stationary
policy = for this construction to be mg.

Now let v) = v™ and define v, = BI"v/_, for all n > 0. The sequence v}, v}, v}, ... then
has two important properties. First, both it and the original sequence vy, vy, vq,... arise from
application of the same X-forever sequence of operators from {B;CT |z e X, 7€ AX}, so it follows

from the Sequential Backup Contraction Lemma (3.5.3) that
|vn, — vl = 0 as n — oo.

Second, since v™ = v™ and BI*v/_, = B! _, for all n > 0, the previous lemma allows us to
conclude that v/, = v™ for all n. But this means that each v’ is the return from some policy,
so v# < v/, < v* for all n. The desired conclusion then follows from taking the limit superior of
both sides of the inequality v/, — v, < v* —v,, and the limit inferior of both sides of the inequality
v# — v, <v! —wv,, in each case making use of the fact that lim,_., ||v) — v,| = 0. 0

It is interesting to note that the example used in part (i) of the Convergence Counterexample
Theorem (4.2.2) has the property that the value for each state oscillates between the optimal and
pessimal values. This shows that the bounds given in the Limit Bounds Theorem (4.2.5) are tight
even when the policy operators used are the local policy improvement operators.

Theorem 4.2.6 [f LY (z,7o(x)) > vo(x) for all x € X, then asynchronous application of
{B: |2 € X} U{l;o| 2z € X,a € A} to (mo,v0) yields convergence to optimality.

Proof. We use the Boundedness Lemma (4.2.3) and the Nondecreasing Lemma (4.2.7), given be-
low. From these, it follows that the sequence vo(x), vi(x), v2(x),. .. is nondecreasing and bounded
above for each x. Therefore, the sequence vg, vy, vs,... has a limit and the Convergence Implies
Optimality Theorem (4.2.1) gives us the desired result.

Lemma 4.2.7 (Nondecreasing) Suppose that a sequence of operators from {B, | x € X} U
{l:n | ® € X,a € A} is applied to an initial (7o, vo) satisfying LY (x,xo(x)) > vo(x) for all z € X.
Then, for all x and 1,

i. LY (x,7(x)) > vi(z) and
ii. vy () > vix).

Proof. We first show that for any fixed ¢, (ii) holds for all  whenever (i) does. If T4 is not a
local backup operator, then v;41(x) = v;(x) for all x and (ii) holds trivially. If 7;4; = B, for some
state y, then v;1(2) = vi(x) for x # y while v;11(y) = LY (y, 7i(y)) > vi(y) by assumption.
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Now we prove that (i) holds for all ¢ by induction. Assume it’s true for ¢ = k. Consider the
case Ty11 = B, for some y. Then 7441 = 7, so, for any z,

L0 (e (2)) = L% (o, mi(2)
L (x,m(x))

>
> wg(z),

where the second inequality holds by the induction hypothesis and the first inequality follows
from the fact that vgyy; > v, which was shown above to be a consequence of this same induction
hypothesis. Since
LU (y, mp (s if x =y.
ven(z) = { (. me(y)) y

vi(x) otherwise,

it follows that LY+ (z, 7gy1(2)) > vg1(x) for all @ whenever Ty = B, for some y.
Now consider the case when T4y = I, , for some state y and action a. Since mpq1(2) = 7p(2)
when © # y and

L%y, miia(y)) = L™y, Lkme(y))
> ka(‘yvﬂ-k(‘y))?

we see that L% (x, mpq1(2)) > L% (2, 7x(x)) for all & in this case. Since vp4q = vy, it follows that,
for any x,

L1 (0, (@) = L% (0, T ()
> L%(z,m(x))
> wi(z)
= Uk+1(.?7),
where the second inequality holds by the induction hypothesis. L

We single out the following noteworthy corollaries to Theorem 4.2.6.

Corollary 4.2.8 [f all the expected rewards R(x,a) are nonnegative and vo(x) = 0 for all z, then
asynchronous application of {B, | v € X}U{l,. |z € X,a € A} yields convergence to optimality.

Proof. For any x,

L*(z,mo(x)) = R(z,a)+7 3 phyvo(y)

yeX
= R(z,a)
> 0

= wo(x).
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The following result provides an interesting generalization of policy iteration. It represents an
asynchronous extension of a similar result obtained earlier by Puterman and Shin (1978) based
on the use of global backup and policy improvement steps.

Corollary 4.2.9 [fvg = v™, then asynchronous application of { B, | x € X}U{l, .|z € X,a € A}
yields convergence to optimality.

Proof. For any x,
L%z, mo()) = v7(2) = wo(2).
]

Now we observe that when certain conditions are imposed on the discount parameter v, con-
vergence of the value function can be guaranteed, which leads to other interesting ways that
convergence to optimality may be assured.

Theorem 4.2.10 Asynchronous application of the operators from S to an arbitrary (g, vo) yields
convergence to optimality whenever S and v satisfy:

i. S={B;|lee X}U{l,|ze€ X} and~y < 1/2; or
ii. S={B; |z € X} U{l,, |z € X,a € A} and v < 1/|A].

Proof. In light of the Convergence Implies Optimality Theorem (4.2.1), it suffices to prove
convergence of the resulting sequence of value functions vy, vy, vs, . ... For either case, define

L(z) =limsupv;(x) — liminf v;(x)

1—00 11— 00

for each state x, and let

L* = max L(z),
zeX

with 2* chosen to be any state such that L(z*) = L*. Note that by the Boundedness Lemma
(4.2.3), (or by the Limit Bounds Theorem), these limits inferior and superior are finite, so the
L(z) values are well defined. Furthermore, L* is well-defined since there are finitely many states,
and, of course, it is nonnegative since each L(z) is. For each z, L(z) is a measure of the limiting
extent of variation in the values {vi(z)}, with 2* being a state undergoing the widest such variation.
We now proceed to show that L* = 0 for either case.

Momentarily fix € > 0 and pick N so that & > N implies

liminfo;(z) — € < vp(z) < limsup v;(x) + €. (5)

oo 71— 00

For each a € A define

bo(a) = jnf L™ (2", a)
= R(z"a)+7 inf > ple,vi(y) (6)

yeX
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and

bi(a) = sup L*™*(z",a)
k>N

= R(z",a) +vsup Y ple,vn(y). (7)

k2N yex

These represent the lower and upper limits, respectively, on the possible values that could be
obtained if one were to apply backup along action a at state z* at any point beyond step N. From

(6) and (5) it follows that

bo(a) < R(z*,a)+7 Y Pary limsup vi(x) + €.

yEX 1—00

Likewise, from (7) and (5) it follows that

bi(a) > R(z*,a) +7 > Py liminfo;(z) — €.

yeX

Thus for each a the lookahead value at z* along «a is always contained in the interval [bo(a), by(a)]
after step N. Thus, letting d(a) = by(a) — bo(a) denote the size of this interval we have that

d(a) < 7Y poe,Lly) + 2ye

yeX
< ALT 4 27¢

for all @ € A.

Note that if the sequence of operators contains no policy improvement operators beyond step
N, then all subsequent backups at z* will always be along the same particular action a, so the
entire range of variation in the value for * beyond step N can be no larger than the size of the
interval [bo(a), b1(a)], so that

L™ <d(a) < yL* + 2ve

in this case, which implies
2ve
L=~
for any v < 1. Since this is true for all € > 0, it follows that L* = 0 in this case.

Now suppose that a policy improvement operator [« , or I« is applied after step V. Note
that when a and @’ are two actions such that by(a) > b1(a’), action o’ will never be preferred over
action a. Thus when the operator [« is applied after step N, the only possible actions it might

L <

recommend are those whose [b, b;] intervals intersect that for any a* such that bg(a*) = max, bo(a).
But this implies that the entire range of variation in the value for z* beyond step N can be no
larger than the extent to which these [bg, b;1] intervals can overlap any having maximum by. Thus

L* < 2(yL* + 2v¢)

so that
(1 =29)L" < 4~e.
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When v < 1/2, this implies
4ve
1 -2y
Since this is true for all € > 0, it follows that L* = 0 in this case.
Now suppose that the policy improvement operator I,., is applied after step N, with the
policy at that moment being @’ at the state x. If the interval [bg(a), bi(a)] intersects the interval

L <

[bo(a'), bi(a’)], then it is possible for the subsequent policy to be either a or a’. In this case it is not
intersection with the topmost interval that determines whether an action might be recommended
as the policy, but intersection with the interval for the current policy. Thus the maximum range of
variation in the value for state z* is equal to the sum of the ranges of variation for the lookahead
values along all actions. That is,

L™ < ) d(a) < [A[(vL™ + 27e),
a€A

so that
(1 = A L* < 2/AJe

When v < 1/|A]|, this implies

2|Alve
LI < ———.
1 —|Aly
Since this is true for all € > 0, it follows that L* = 0 in this case as well. L

Since it is common to use a discount parameter having a value reasonably close to 1, this result
would not appear to be particularly useful. Nevertheless, it can be shown to have interesting
consequences for more practical values of v when this theory is extended to include the use of
multi-step backup operators. We omit further discussion of this idea here.

4.3 Results For Random Sequences

Up to this point we have focused on application of arbitrary sequences of the local backup and
policy improvement operators, noting conditions under which such sequences necessarily result in
convergence to optimality and also finding specific sequences where such convergence fails. Now
we consider randomly generated sequences of these operators and obtain results that are more
generally favorable.

Given a finite set of operators S on AX x RX, and a random process generating an infinite
sequence 141,75, ... of operators from &, define

Prn = (T1,T;{l.}%b)esn Pr{T, | T1,Ty,...,T,_1}.
We will say that this process is stochastically always if p, > p > 0 for all n, or, in other words,
if, at any step, any operator in § has conditional probability at least p > 0 of being selected,
regardless of the previous n — 1 operator selections. This includes the case when the sequence
is obtained by independent random draws from a stationary distribution over S such that every
operator has nonzero probability.
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Lemma 4.3.1 (Stochastically Always Lemma) Let ¥ be an infinite sequence of operators
from S generated by a stochastically always process and let X' be a given finite sequence of operators

from §. Then
i. % is S-forever with probability 1;
it. X' appears as a contiguous subsequence of ¥ with probability 1; and
iit. X' appears infinitely often as a contiguous subsequence of ¥ with probability 1.

Proof. Clearly, (iii) implies (ii). Also, (iii) implies (i) since we can pick as ¥’ any single operator
T € S. Therefore, we prove (iii). Let E,,; represent the event that ¥/ fails to occur as a contiguous
subsequence aligned to lie along positions m + kN + 1 through m + (k+ 1) N in ¥ for some k such
that 0 < k < [, with P, ; the corresponding probability. Then let

Em = ﬂ Em,h
(=0

with P, its corresponding probability. Since the event that 3’ does occur in a specific location
within ¥ is just the intersection of the events that the specific operators within ¥’ occur in their
respective positions, it is easy to see by induction that

Py < (1=p").

But then
P, = llim(l —pM) =0,

since p > 0. Now let £ be the event that there exists some point n beyond which ¥’ fails to occur
as a contiguous subsequence within 3. Then

EcC | En,
m=1
but the countable union of probability zero events has probability zero. Therefore, the probability
that no such n exists is 1.

Theorem 4.3.2 Suppose a sequence of operators from {B, | x € X} U {l,, |z € X,a € A} is
generated by a stochastically always process. Then for any initial policy-value pair (7o, vo) the
resulting sequence of policy-value pairs converges to optimality with probability 1.

Proof. By the Boundedness Lemma, if we start with any (7, v9) and apply any finite sequence
of these backup and policy improvement operators. the resulting value function can never be
outside a particular bounded region V in R¥. There are many possible finite sequences of local
backup and policy improvement operators that map any (7,v) with v € V into what we might
call the optimality capture region

sV
{(ﬂ',v) | o —v"| < aand s optimal} .
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For concreteness, we show how to construct a particular such finite sequence ¥’'. Let d equal
the maximum distance from v* to any v € V. Take ¥’ to be a concatenation of m copies of a
sequence formed by cycling through the value iteration operators

{Belzay Loy -+ Loy, | @ € X}

in some fixed order. Since each such cycle contracts the distance to v* by a factor of v, the number
m of such cycles required is then determined by the requirement that

v*

~"d < o

Now, once the optimality capture region is reached, the policies are always optimal, by the
Close Enough Lemma, and the v’s must necessarily converge to v* no matter what operators are
applied from that point on, as long as all backup operators continue to appear infinitely often.
Thus the only way the sequence of operators could fail to give rise to convergence to optimality is
for it to fail to contain the finite sequence ¥ as a contiguous subsequence anywhere within it or to
fail to be forever in the backup operators. But the Stochastically Always Lemma (4.3.1) implies
that these are both probability zero events. Ll

The particular argument given here is sufficient to prove the theorem but may appear to suggest
that it might take an astronomically long time before such convergence occurs, since it involves
waiting until a particular long finite string of operators is generated, which has an extremely small
probability of occurence. It would be useful to establish some better bounds on the expected
number of steps of this process before only optimal policies are generated. It seems reasonable to
conjecture that this expected number of steps is not astronomically large since it ought to be the
case that a large proportion of strings of these operators of a certain length could do an equivalent

job.

5 Use of Policy Operators That Examine Single Actions

Now we consider alternative policy improvement operators that do not require comparing two or
more lookahead values in order to make changes to a policy. Such operators can be viewed as
conforming more directly to the spirit of the actor-critic algorithms that motivated this study,
while the policy improvement operators used up to this point can be seen to be more closely
related to steps used in standard dynamic programming algorithms. These new operators involve
comparing the lookahead value along some candidate action with the current value for the state
in question.
For each z € X, a € A, and v € R, define the operator oo AX — AX by

a ify=aand LY(x,a) > v(x)
7(y) otherwise.

Jram(y) = {

In other words, J7 7 is the policy obtained from 7 by replacing w(x) by a if a gives at least as
high” a lookahead value as the current value of the state . A consequence of this definition is that

“Once again, the precise manner of resolving ties turns out to make essentially no difference.
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L¥(x,J; ,m(x)) > v(z). Also, for each x € X and a € A, define the operator J, , : AX x RX —
AX x RX by
Jra(m,v) = (J] 7, 0).

5.1 Results For Arbitrary Sequences

Now we consider applying a sequence of operators Ty, Ts,... from {B, | @ € X} U {J,. | = €
X,a € A} to an initial policy-value pair (7, vg), obtaining a sequence of policy-value pairs where
(7ky k) = Th(7p—1,vk—1) for all & > 0. One result concerning such sequences is the following.

Theorem 5.1.1 [f LY (z,7o(x)) > vo(x) for all x € X, then asynchronous application of
{B: |2 € X} U{ByJpa |z € X,a € A} to (wg,v0) yields convergence to optimality.

Proof. That the resulting sequence of value functions is nondecreasing is a consequence of
Lemma 5.1.2, stated and proved below, which is a variant of the Nondecreasing Lemma (4.2.7)
in which the J,, operators appear in place of the I, operators. Furthermore, this sequence
is bounded, so it must have a limit v.,, which cannot exceed v* by the Limit Bounds Theorem
(4.2.5). It therefore follows that v, < v* for all n. We now show that v, = v*.

Suppose that ve, # v*. Then we can apply the Non-v* Lemma (4.1.1) to v. to obtain an
x € X and € > 0 satisfying certain properties to be spelled out below. Pick N so that n > N
implies

[on = veol| <é,
and then pick £ > N so that T4 = B,J, ., with a greedy for v, at z. By the Non-v* Lemma
(4.1.1),
v (x) — L% (x,a) < |o*(x) — L%(x,a)] < v™(2) — voo(x) — €,

vp(2) < veol(x) < LY (2, a).

But this implies that the policy at « will have been set to a by J,,, so that the following B, will
be along a. Thus
vpr1(x) = L% (2, a) > veo(x),

contradicting the fact that vi41(2) is an element of a nondecreasing sequence converging to v, ().
Therefore v, = v*.

All that remains is to show that eventually all policies are optimal. Pick M so that n > M
implies

0 <ov*(x) —vu(x) < 55*

for all . Consider the effect of any backup operator applied after this point. By the Suboptimal
Lemma (5.1.3), also given below, if this backup is along a suboptimal action, the resulting updated
value at x would fail to lie in this interval, contradicting the fact that the sequence converges to
v*. Therefore, we conclude that all backups after this point must be along optimal actions, so all
policies must eventually be optimal. Ll
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Lemma 5.1.2 Suppose that a sequence of operators from {B, | x € X}U{J,q | 2 € X,a € A} is
applied to an initial (7o, ve) satisfying L* (x,mo(x)) > vo(x) for all x € X. Then, for all x and 1,

i. LY (z,7(x)) > vi(z) and
. vipr(x) > vix).

Proof. The only difference between this lemma and the Nondecreasing Lemma (4.2.7) is the
presence of the J, , operators in place of the I, , operators, and most of the proof is the same in
both cases so we do not repeat the identical portions of the argument here. The only difference
is in the proof of the inductive step for (i) for the case when Ty = J, , for some y and a, which
we now consider.

If 2 =y and wp41(x) # mp(x), it must be because L% (x, 7py1(2)) > vi(x). In all other cases,
Tr1(x) = me(a), so

L (2, mnn (2)) = L% (2, ma(2) 2 oae)

by the induction hypothesis. Therefore, in all cases,

L1 (0, (@) = L (e, g ()
> wi(z)
= ‘Uk-}-l(x)v

which establishes the induction step for (i) when the J, , operator is applied. 0

Lemma 5.1.3 (Suboptimal Lemma) If v < v* and a is not optimal at x, then L’(z,a) <
v* — 55*.

Proof. Let a* denote an optimal action at x. By the monotonicity of lookahead and the
definition of &V,
L¥(z,a) < LV (z,a) < L” (z,a%) — 8% =v*(x) — 6V .

O

It turns out that Theorem 5.1.1 is false if { B, | © € X}U{B,J,. | # € X,a € A} is replaced by
{B: |2 € X}U{J;q |z € X,a € A}. This is because we can arrange a sequence of these operators
in which the backup B, is performed only after applying an operator J, , with a suboptimal, even
though an earlier J, ,« was applied, with ¢* optimal. This will yield an nondecreasing sequence of
value functions converging to a limit not equal to v*. The problem is that momentary changes of
policy need not be accompanied by corresponding changes in the value function.

It is also interesting to consider certain conditional backup operators that correspond to the J
operators in a certain sense. We first define C,, : R* — RX by

oy ) max{v(z),L%(z,a)} ify==
Cx,av(y) - { U(y) otherwise,
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and then, in a harmless abuse of notation, we further define C,, : AX x R*¥ — AX x RX by
Cra(m,v) = (Cpam,v).

It should always be clear from the context which operator is intended in any particular reference
to Cy 4. Note that, unlike the local backup operators, these operators have no dependency on the
current choice of policy.

We first note the following result.

Lemma 5.1.4 (C Convergence) Any sequence of value functions obtained by asynchronous ap-
plication of the set of operators {Cy o | © € X,a € A} to an initial vg < v* converges to v*.

Proof. This sequence is clearly nondecreasing and bounded, so it has a limit v.,. Furthermore,
by the Limit Bounds Theorem (4.2.5), this limit cannot exceed v*. It therefore follows that v, < v*
for all n. We now show that v,, = v*.

Suppose that ve, # v*. Then we can apply the Non-v* Lemma (4.1.1) to v, to obtain an
x € X and € > 0 satisfying certain properties to be spelled out below. Pick N so that n > N
implies

[on = veol| <é,
and then pick & > N so that Ty41 = C,,, with a greedy for v,, at . By the Non-v* Lemma
(4.1.1),
vi(x) — L% (x,a) < |v*(x) — L%(x,a)] < v*(2) — voo(x) — €,

V() < veol(x) < LY (2, a).

But this implies that
V1) = L% (2, a) > veo(x),

contradicting the fact that vi41(2) is an element of a nondecreasing sequence converging to v, ().
Therefore vo, = v*.

We can construct an algorithm roughly analogous to asynchronous value iteration but requiring
no comparisons of multiple actions by using the C' and J operators in place of the B and [
operators. For this algorithm we use compositions of the form C, ,J,,. Note that the effect at
state x of applying this composition can be summarized succinctly as follows: If LV(z,a) > v(x)
then set the value at @ to L(x, a) and set the policy at = to a; otherwise, leave them unchanged.

Theorem 5.1.5 If vg(x) < v*(x) for all states x, then asynchronous application of {Cy oz |
x € X,a € A} to (7o, v0) yields convergence to optimality.

Proof. By the C Convergence Lemma (5.1.4), the value functions must converge to v*, so it is
only necessary to show that eventually all policies are optimal. First we note that vi(z) < v*(x)
for all £ and x. This follows easily by induction on k, using the Less Than v* Lemma (2.5.3).
Consider a fixed state x. Since v,(z) T v*(z), there are an infinite number of indices k where
vg+1(x) > vi(x), so for each of these it must be the case that L"(x,a) > vg(z) for some a, so the
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policy at @ will have been set to some such a at each such step. Since v,(z) — v*(x) there exists
M, such that k > M, implies vi(z) > v* — 6%". Then set M = max, M,. By the Suboptimal
Lemma (5.1.3), the policy cannot be changed to a suboptimal action after this point since the
resulting value function would then satisfy v(z) < v* — 62", a contradiction. Since the operator
Jz,av, where a* is optimal at x, must appear beyond this point, all subsequent policy actions for
must then be optimal, and thus all policies are eventually optimal. Ll

What about asynchronous application of {Cy, | @ € X,a € AJU{J,, | 2 € X,a € A}7 Tt
is possible to construct counterexamples to show that optimal policies need not arise in all cases,
but there are interesting cases when convergence to optimality is guaranteed for these operators,
as given by the following result.

Theorem 5.1.6 [f vo(x) < v*(x) for all states x and there is a unique opltimal action at each
state, then asynchronous application of {Cro | @ € X,a € A} U{J,, | ® € X,a € A} to (7g,v0)
yields convergence to optimality.

Proof. We already know that the value functions must converge to v*, so we now check that
eventually all policies are optimal. First we note that vi(z) < v*(z) for all £ and x. This follows
easily by induction on k, using the Less Than v* Lemma (2.5.3). Consider a fixed state x and let
a* be the unique optimal action at x. Since v,(z) T v*(x), there are an infinite number of indices &
where vgy(2) > vp(x). Furthermore, there exists M, such that k > M, implies vgy(z) > v* — &Y.
Thus, there are infinitely many indices k > M, where viq1(z) = L (z,a) > vi(z) for some a, and
it follows from the Suboptimal Lemma (5.1.3) that ¢ must be optimal for z, so ¢ = a*. In other
words, if & > M, and vgii(x) > vi(x), then Ty = Cpyer and vegq(x) = L% (z,a*). Also, the
existence of such a k is guaranteed.

Given such a k, pick m > k so that T,,41 = J; 4+ and then let [ be the largest index less than
m such that viy1(z) > vi(x). Clearly [ > k > M,, so viy1 = L"(x,a*). Also, it follows from the
definition of [ that v,,(z) = viy1(x). Therefore,

L' (x,a") = L™ (x,a™) > L™ (2,a") = vip1(2) = v,(2),

which implies that 7,,11(2) = a*. Furthermore, by the Suboptimal Lemma (5.1.3), for any sub-
optimal action a and any k > M,, we have

LU (z,a) < v* =6 < vy,

so application of J,, for suboptimal a cannot alter the policy beyond this point. Since z was
arbitrary, there is a point far enough out in the sequence when the entire policy becomes and
remains optimal. Ll

Note that in these proofs involving the C' and J operators, the key issue is to insure that for
each x an operator J, o, with a* optimal, is triggered (i.e., leads to a policy change) at least once
after the value function gets close enough to v* that the Suboptimal Lemma (5.1.3) applies. It
is possible to construct a counterexample to optimal convergence under asynchronous application
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of the C' and J operators (still assuming that vo(x) < v*(z) for all ) where the initial choice of
suboptimal policy action is never changed because an appropriate J operator is never triggered.
As the previous theorem shows, this requires two or more optimal actions at a state. To generate
such a counterexample, consider a Markov environment in which a particular state x has exactly
two optimal actions, a] and a3, and let the initial policy be set to a third, suboptimal action. The
idea is to always precede the application of J;.» by updating at other states followed by Cz,aj,
with ¢ # j, so that the value at z after application of CLG? is strictly larger than the lookahead
along a7, thus guaranteeing that J, .» is never triggered.

5.2 Results For Random Sequences

Just as with the B, and [, operators, we can obtain probability one convergence under less
restrictive conditions if we assume that the operators are selected randomly in such a way that
every operator has a probability bounded away from zero of being selected on any step. Recall
that earlier we introduced the term stochastically always to describe such a process of operator
selection.

Before considering the main results of this subsection, we define quantities analogous to the
6V and 6" used earlier in the Close Enough Lemma (3.6.2). Then we prove a somewhat analogous
lemma involving these new quantities that will be used to prove our first main result.

For any v € R¥, let

v = min[{|L*(z,a) — L'(2,&)] | a,d’ € A} — {0},

and let

v’ = minv,
zeX

That is, vy is the smallest nonzero absolute difference between the lookahead value at state z
along any two actions, while v¥ is the smallest such nonzero difference taken across all states.

Lemma 5.2.1 (Close To v" Lemma) Let 7 € AX, 2 € X,a € A. Let v € R* with |jv —v™| <
v /(1 +7). Then L¥(z,a) > v(z) implies L (z,a) > v™(z).

Proof.

<
N
SN—
t~
S
N
Q
S—
a4
3
N
=
N N
o4

—v(z) +v(z) = L (x,a)
()

< UW($ v(x)+ LY (z,a) — LUW(.f,CL)
< o) — o(@)] 4 1 a) — L (2, a)
o
< +
14+~ 1+~
= l/’Uﬂ-

Since v™(x) = L*" (z, n(x)), it follows that

LV (z,7(2)) — L (z,a) < v*
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But then, if L' (z,7(z)) > LV (2, a), we would have

™

L7 (z,7(2)) — L (z,a)| = L"" (z,7(2)) — LY (z,a) < V",
and since " is the minimum nonzero value of |L""(z,a) — L""(z,d’)| for all @ and @', this would
imply that that LV (z,7(z)) — L*" (z,a) = 0, a contradiction. Therefore

v (z) = LV (z,7(x)) < LV (z,a).

Theorem 5.2.2 Suppose a sequence of operators from {B, | v € X} U{J,. |2 € X,a € A} is
generated by a stochastically always process. Then for any initial policy-value pair (7o, vo) the
resulting sequence of policy-value pairs converges to optimality with probability 1.

Proof. The argument here has some general similarities to that used earlier to prove the
corresponding result with the B, and [, operators. Here we use something resembling policy
iteration in that it involves alternately applying a (finite) composition of backup operators to
compute a close approximation to the return from the current policy and then applying a certain
composition of J, , operators to improve the policy.

To describe this a little more precisely, let the states be enumerated in some order z1, zs, ..., z|x|,
and then let B denote the composition B, B, - - -lexl. Also, for each action a let .J, denote the
composition Jy, oS5, 4 J$|X|7a. Finally, let the actions be enumerated in some order ay, ay, ..., a4

and let T denote the composition JalBNJa,ZBN e Ja|A|BN for any nonegative integer N. Then
we show below that for any given (7,v¢) there are nonnegative integers M and N such that
T, the M-fold composition of T with itself, has the property that the appearance of the corre-
sponding finite sequence of operators anywhere within the infinite sequence will drive the resulting
policy and value functions into the optimality capture region

{(’/T,‘U) | lv —v*|| < 6" and = optimal}.

Once this happens, it follows from the Suboptimal Lemma (5.1.3) that no .J, , operator can ever
make the policy suboptimal, and as long as every backup operator continues to appear infinitely
often, the value functions must then converge to v*. Since the Stochastically Always Lemma
(4.3.1) guarantees with probability 1 both the appearance of the desired finite subsequence within
the infinite sequence and the infinitely often appearance of every backup operator, the desired
result then follows.

Thus it remains to demonstrate the finite composition 7% that maps into the optimality
capture region given above. Note that for each suboptimal stationary policy 7 € AX there is a
corresponding &, > 0 given by the Non-v* Lemma (4.1.1) applied to v™ # v*. For any stationary
policy 7, we then define

™

{ 6V if 7 is optimal
Nr =

. v th .
min (&x, {7 ] otherwise,
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Now by the Boundedness Lemma (4.2.3), if we start with any (7o, vg) and apply any finite sequence
of B, and J,, operators. the resulting value function can never be outside a particular bounded
region V in R*. Thus, consider any (7, v) such that v € V. By the Sequential Backup Contraction
Lemma (3.5.3) there is an integer N, such that, for & > N, applying B to (7, v) results in a
value function whose distance to v™ is less than n,. We thus let N = max,c4x N, which is
well-defined since A¥ is finite, and it follows that applying BY to any (7,v) with v € V results in
a value function whose distance to v™ is less than 7.

Thus any time BY is applied we are guaranteed that the resulting value function is within
an 7n,-neighborhood of v™, for the current policy #. Consider the effect of now applying J, for
some a. If the policy 7 is already optimal, then by the Suboptimal Lemma (5.1.3) it must remain
optimal. For the remainder of the proof, assume 7 is not optimal. Then the application of J, either
results in the same policy or there is at least one x for which the policy is changed to a because
L¥(x,a) > v(z). In this latter case, the Close To v™ Lemma (5.2.1) implies that LV (z,a) > v™(z).
But then the Policy Improvement Proposition (Proposition 3.6.1) implies that any such change
must result in a policy 7’ such that v™ (z) > v™(z). Thus application of the composition .J, B
will always result in a policy no worse than the current policy. In addition, we now show that
applying T, the composition of all the J, BN operators, to a suboptimal policy must result in a
strict policy improvement. To see this, suppose that it does not. The only way this can happen is
for all the value functions resulting from application of each J,BY in turn to be close to the same
v™, since the policies cannot get worse. Thus just before any J, is applied, the value function v is
in an ¢,-neighborhood of v™ # v*. Therefore the Non-v* Lemma (4.1.1) implies that there exists
z and a such that

|v*(x) — L(z,a)| < |v*(z) —v™(2)] — &x.
Since v (x) < v*(x), this means that
vi(x) — LY(z,a) < |v*(z) — LY(z,a)| < v™(x) — v"(x) — &,

SO
L¥(z,a) > v"(x) + &
But it is also true that

L*(z,a) — LUW(‘%G) < [LY(z,a) - va(xaa” < Vers

SO
LV (z,a) > LY(x,a) —veq
> v'(@) +ex — VEr
> v (x).

But by the Policy Improvement Proposition (3.6.1) this means that the policy resulting from
application of J,, for this particular  and « is indeed a strict improvement, contradicting our
assumption that no strict improvement occurs under application of 7. Therefore, each application
of Ty results in a strict policy improvement. Since there are |A|X! distinct policies, it follows that
applying T for M = |A|X! takes any (7, v) with v € V into the desired optimality capture region.
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Theorem 5.2.3 Suppose a sequence of operators from{Cy, | v € X,a € A}U{Jpo |z € X,a € A}
is generated by a stochastically always process. Then for any initial policy-value pair (7o, vo) such
that vo(x) < v*(x) for all states x, the resulting sequence of policy-value pairs converges to opti-
mality with probability 1.

Proof. By the Stochastically Always Lemma (4.3.1) we know that with probability 1 every C, ,
operator will appear infinitely often, in which case the C Convergence Lemma (5.1.4) guarantees
that the value functions will approach v*. Thus it remains to show that, with probability 1,
eventually all policies are optimal.

With probability 1, there exists NV such that n > N implies
v € {o] lo— 7] < &,

Furthermore, we know that even beyond this point the value functions must continue to increase
(with probability 1) since v;(x) < v*(x) for all ¢ by the Less Than v* Lemma (2.5.3). By the Sub-
optimal Lemma (5.1.3), such an increase in the value function at « must be caused by application
of some C, , with a optimal. If for each © we can guarantee that there is at least one & > N such
that vi(z) > vg_1(2) and this change in value function is accompanied by setting the policy to
the corresponding action, we are done.

One way for this change in value function to be accompanied by a corresponding setting of the
policy is to apply J,, immediately after applying C, , (rather than before as considered earlier).
This is because if v’ = C; ,v and v'(z) > v(x), then

v'(z) = LY(z,a) < LUI(CE,CL)

by the monotonicity of lookahead, so immediate application of .J,, at this point will cause the
policy at x to be set to a.

Therefore, consider the set K of all the indices k such that £ > N and vg(z) > ve_1(x) and
disregard the probability zero event that K is finite. The corresponding operator T} for each of
the infinitely many such k values is then some C, , with a optimal. Consider for each such & the
next operator Ty4q. If at least one of these is the corresponding .J, ,, with a the same action as in
the preceding operator C ,, then the policy at « will become and remain optimal. For any one of
these values of k the conditional probability that the next operator is not this particular J, , is less
than or equal to 1 —p < 1, where p > 0 is the lower bound guaranteed by the stochastically always
condition. Therefore, the probability that for all £ € K the next operator is not the corresponding

kex

J operator is less than or equal to

since K is an infinite set. Thus we conclude that with probability 1 there will be at least one
composition J; ,C, , appearing beyond step N at which the value function at « undergoes a strict
increase, and at which, therefore, the policy will be set to the optimal action a. Since this is true
for all z, it follows that all policies are eventually optimal with probability 1. Ll
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6 Other Results

There are certainly many other results one might try to obtain involving the operators defined
in this paper, and there may be other related operators that are useful to study as well. One
particular combination of operators already defined here that we have not considered up to this
point are the C, , operators in conjunction with the I, , operators, for which the following result

holds.

Theorem 6.0.4 If vy < v*, then asynchronous application of {Cry |z € X,a € A} U{l,, |z €
X,a € A} to (mg,v0) yields convergence to optimality.

Proof. We have already shown that the value functions must converge to v*. Thus beyond
some point in this sequence, all the value functions will be sufficiently close to v* that the Close
Enough Lemma (3.6.2) applies. Beyond this point, application of the operator I .+, where a* is
optimal at = will either change the policy to a* or leave it unchanged, in which case the Close
Enough Lemma implies that it was already optimal. Furthermore, the Close Enough Lemma
(3.6.2) also implies that any subsequent application of I, ,, with a suboptimal, cannot change the
policy. Therefore, eventually all policies become and remain optimal. Ll

Singh and Gullapalli (1993) have recently introduced another operator distinct from those we
have considered here and established an interesting result involving its use in conjunction with the

1, , operators. For completeness, we describe this operator here and include a proof of this result.
For each z € X and = € A¥X, define the operator D7 : R* — R¥X by

. max(v(x), LY (x, 7(x ify=ux
Dzv(y) :{ 'v(y)( Bl otﬁerwise.

That is, DIv is the value function obtained from v by replacing v(z) by the one-step lookahead
value along 7, but only if this does not decrease v(x). Also, for each x € X, define the operator
D, : AX x RYX = AX x RX by

D,(7,v) = (7, Dlv).

Singh and Gullapalli have called D, a single-sided policy evaluation operator, but we can think of
it as a local backup operator with a ratchet.
Singh and Gullapalli have proved the following result.

Theorem 6.0.5 [fvy < v*, then asynchronous application of {D, | x € X}U{l,, |z € X,a € A}
to (mo,vo) yields convergence to optimality.

Proof. The sequence of value functions is clearly nondecreasing and bounded, so it has a limit
Uso, Which cannot exceed v*. Suppose that v,, # v*. Then we can apply the Non-v* Lemma
(4.1.1) to vy to obtain an & € X and e > 0 satisfying certain properties to be spelled out below.

Pick N so that n > N implies
I
o = ool < min (7).
27
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and then pick k > N so that Tyyq = I, 4, with a greedy for v.,. Let [ > k be such that T}y, = D,.
By the Close Enough Lemma (3.6.2), m;(x) must be a greedy action at x for v, since it must have
looked no worse than a using a value function within 6= /(2v) of ve. Thus the Non-v* Lemma
(4.1.1) allows us to conclude that

o) = L(e, (@) < Jo(2) = L% (e, me))] < v*(2) — vale) — <,

Lz, m(x)) > veo(x) + € > voo(x) > vi(2).

But then
oa(e) = Lz, m(e)) > vale),

a contradiction. Therefore v, = v*.

Furthermore, that the policies must eventually all be optimal follows from the Close Enough
Lemma (3.6.2), since eventually all v, will be within §*"/(27) of v*. Thus any I, .+ operator, with
a* optimal at x, applied beyond this point must set the policy at x to an optimal action, and any
changes in the policy at = occuring after this can only replace one optimal action with another.

[

7 Summary and Discussion

We have presented results here that address questions of convergence to optimality when the policy
and value function are updated completely asynchronously across individual states (or, in some
cases, state-action pairs). The main results are that, while there are cases when such convergence
may fail, there are a number of reasonably general situations in which such convergence is guar-
anteed. While these results provide immediately applicable alternative strategies for conventional
dynamic programming, they are not as directly applicable to the understanding of actor-critic
learning systems because of the simplifying assumptions made in their derivation. However, it is
interesting to note that there is at least one interesting class of algorithms to which these results
at least come close to being applicable in their current form—mnamely, a certain version of the
Dyna-PI form of Sutton’s (1990) relazation planning algorithms, in which learning occurs while
arbitrarily selected state-action pairs are explored in a model that is gradually acquired on line.
For this algorithm, it must be assumed that what Singh (1993) has termed full backups are used,
requiring the explicit use of the transition and reward probabilities in applying any B, operator.

In fact, although we omit the details here, it is not hard to extend the theory contained in this
paper to the case when the underlying model (i.e., transition and reward probabilities) is itself
being estimated. In particular, consider the case when all such reward and transition probability
estimates converge to their true values with probability 1. For example, in estimating transition
probabilities, it is natural to maintain the obvious counters and form probability estimates by
using the appropriate ratios. As long as all transitions are sampled infinitely often, the strong
law of large numbers applies and probability 1 convergence to the true transition probabilities is
guaranteed. While the convergence results given in this paper assume that the true model is used,
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it is not hard to show® that application of operator sequences yielding convergence to optimality
under this assumption may be intermixed freely with a model estimation process that converges
to the true model with probability 1, and the overall result is convergence to optimality (for the
true model) with probability 1.

An important next step in this theory, especially for questions of on-line learning in stochas-
tic environments, is to perform a corresponding analysis when sample backups, rather than full
backups, are used. In this case, the backup operation should take the form

v(e) — (1 = aJo(z) + alr +yo(y)),

where r is the random reward received and y the random next state following a particular visit
to state . This differs from the form of backup considered throughout this paper both in the
random nature of the immediate reward and next state actually used and in the presence of the
underrelaxation parameter o € (0,1). Furthermore, it would seem that a corresponding way of
more smoothly transitioning between policies would also be necessary. Since the space of actions
is assumed to be discrete, this can be done by considering randomized policies, so that the policy
can be identified with a point in a certain simplex. In this case policy updates can correspond to
small steps in this simplex, as in stochastic learning automata (Narendra & Thathatchar, 1989).
This is actually the way the actor works in the ASE/ACE architecture of Barto, Sutton, and
Anderson (1983). Perhaps the theoretical tools recently developed by Jaakola, Jordan, and Singh
(1993) can be used or extended to provide an analysis of such algorithms.

A separate question, interesting both from the learning system perspective and also from a more
general asynchronous dynamic programming perspective, is the rate of convergence of algorithms
of the type investigated here.

8 References

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1991). Real-time learning and control using asyn-
chronous dynamic programming (COINS Technical Report 91-57). Department of Computer
Science, University of Massachusetts, Amherst, MA.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike elements that can solve
difficult learning control problems. [EEE Transactions on Systems, Man, and Cybernetics,
13, 835-846.

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H. (1989). Learning and sequential decision
making (COINS Technical Report 89-95). Amherst, MA: University of Massachusetts, De-

partment of Computer and Information Science.

Bertsekas, D. P. (1987). Dynamic Programming: Deterministic and Stochastic Models. Engle-
wood Cliffs, NJ: Prentice Hall.

81 thank Vijay Gullapalli for first bringing this issue, along with some limited results along these lines, to my
attention. Discussions with Peter Dayan have helped convince me of the the validity of the simpler result described
here.

41



Bertsekas, D. P. & Tsitsiklis, J. N. (1989). Parallel and Distributed Computation: Numerical
Methods. Englewood Cliffs, NJ: Prentice Hall.

Dayan, P. (1992). The convergence of TD(A) for general A\. Machine Learning, 8, 341-362.

Holland, J. H. (1986). Escaping brittleness: The possibility of general-purpose learning algo-
rithms applied to rule-based systems. In: R. S. Michalski, J. G. Carbonell, & T. M. Mitchell
(Eds.) Machine Learning: An Artificial Intelligence Approach, Volume II. Los Altos, CA:

Morgan Kaufmann.

Jaakola, T., Jordan, M. I., & Singh, S. P. (1993). On the convergence of stochastic iterative
dynamic programming algorithms (Working Paper). Department of Brain and Cognitive Sci-
ences, Massachusetts Institute of Technology.

Moore, A. W. & Atkeson, C. G., (1992) Memory-based reinforcement learning: Converging with
less data and less real time, In: S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.) Advances in

Neural Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann.

Narendra, K. S. & Thathatchar, M. A. L. (1989). Learning Automata: An Introduction. Engle-
wood Cliffs, NJ: Prentice Hall.

Peng, J. & Williams, R. J. (1992). Efficient learning and planning within the Dyna framework,
Proceedings of the Second International Conference on Simulation of Adaptive Behavior, Hon-

olulu, HI.

Puterman, M. L. & Shin, M. C. (1978). Modified policy iteration algorithms for discounted
Markov decision problems. Management Science, 24, 1127-113T7.

Ross, S. 1983). Introduction to Stochastic Dynamic Programming. New York: Academic Press.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, 3, 210-229. Reprinted in: E. A. Feigenbaum and J. Feldman
(Eds.) (1963). Computers and Thought. New York: McGraw-Hill.

Singh, S. P. (1993). Learning Control in Dynamic Environments. Ph.D. Dissertation, Depart-
ment of Computer Science, University of Massachusetts, Amherst, MA.

Singh, S. P. & Gullapalli, V. (1993). Asynchronous policy iteration with single-sided updates
(Working Paper). Department of Computer Science, University of Massachusetts, Amherst,
MA.

Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. Ph.D. Dissertation,
Department of Computer and Information Science, University of Massachusetts, Amherst

(also COINS Technical Report 84-02).

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3, 9-44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on ap-
proximating dynamic programming. Proceedings of the Seventh International Conference in

42



Machine Learning, 216-224.

Sutton, R. S. (1991). Planning by incremental dynamic programming. Proceedings of the 8th
International Machine Learning Workshop.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. Dissertation, Cambridge
University, Cambridge, England.

Watkins, C. J. C. H. & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279-292.

Werbos, P. J. (1987). Building and understanding adaptive systems: A statistical/numerical
approach to factory automation and brain research. [EFEE Transactions on Systems, Man,
and Cybernetics, 17, 7-20.

Williams, R. J. & Baird, L. C., IIT (1990). A mathematical analysis of actor-critic architectures
for learning optimal controls through incremental dynamic programming. Proceedings of the
Sizth Yale Workshop on Adaptive and Learning Systems, August 15-17, New Haven, CT,
96-101.

Witten, I. H. (1977). An adaptive optimal controller for discrete-time Markov environments.
Information and Control, 34, 286-295.

A Appendix

A.1 List of Symbols

The following list gives the main symbols used in this paper, the consistent way each is used, and
the page number where each first appears or is defined.
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IN 8 <

Meaning

action

action set

local backup operator

local backup operator

local backup operator

number of disjoint S-exhaustive contiguous subsequences in ¥
number of disjoint X-exhaustive contiguous subsequences in X
local conditional backup operator

discount factor

local backup operator with ratchet

local backup operator with ratchet

smallest nonzero difference between largest lookahead value at state z
and lookahead for any other action

minimum of 62 across all states

a positive quantity arising from the Non-v* Lemma

random successor of state  under action a

local policy improvement operator

local policy improvement operator

local policy improvement operator

local policy improvement operator

local conditional policy improvement operator

one-step lookahead value

smallest nonzero absolute difference between lookahead values along any
two actions at state x

minimum of v across all states

probability of transition from state x to state y under action a
policy

random immediate reward for action a at state x

expected value of r(z, a)

real numbers

a set of operators

a sequence of operators

finite subsequence of ¥ consisting of first n operators

kth member of a sequence of operators

value function

return for policy =

return for optimal policy

return for pessimal policy

state set

state

partial order relation on value functions

max norm
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A.2 List of Nonstandard Terms

The following is a list of terms used in this paper that are not necessarily in common use in this
field, each with the page number where it is defined.

Term Page

asynchronous operator application 8
convergence to optimality 8
coordinatewise «y-contraction 8
exhaustive, X-exhaustive 7
forever, S-forever, X-forever 8
greedy action 11
local backup operator 6
local backup operator with ratchet 39

local max-backup operator 13
local policy improvement operator 7
one-step lookahead 5
pessimal policy 23
sequential contraction property 10
stochastically always 28
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