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A well-behaved function approximation system:

- All value functions can be represented

- Changing the value of one state with backprop:

changes neighbors by at most 2/3 as much

- Basically a lookup table plus one generalizing weight (w0)
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Reinforcement learning can fail to converge:
- Learning equation: !w R v v v

wnew old
old= " + "# $

%! "

- Every transition updated equally often

- Learning is a special case of TD(0), Q-learning + backprop, 
and incremental value iteration + backprop

-If state 6 starts high, it climbs more often than falls.

- All states/weights diverge to 
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Function approximation system is linear:

- Value is dot product of weight and state vectors:

State 1: 1 2 0 0 0 0 0
State 2: 1 0 2 0 0 0 0
State 3: 1 0 0 2 0 0 0
State 4: 1 0 0 0 2 0 0
State 5: 1 0 0 0 0 2 0
State 6: 2 0 0 0 0 0 1

- State vectors are linearly independent

- State vectors have same magnitude (1, 2,  norms)
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Gradient descent on mean squared error:

- Define mean squared Bellman residual:

E R v vnew old= + "& $! "2

- Learning equation does gradient descent on E:

!w E
w

= "#
%
%

- Guaranteed convergence to a local minimum for epoch-wise.

- Global minimum if there exists a differentiable mapping from
value functions to weight vectors



The Hall Problem:

w0 w1 w2 w3 w4 w5

Residual gradient convergence is very slow:

- Information flows the wrong direction almost as fast

- For 10 states, =0.9, mean squared residual is ill conditioned:

- Hessian eigenvalues differ by ratio of 2000
- Hessian is not diagonal, eigenvectors at 45  angles
- Some algorithms ineffective (Delta-bar-delta, quickprop)

- But the direct method is fast, and does converge!



Direct Method decreases mean squared residual:

!Wd
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Direct method increases mean squared residual:

!Wrg
!Wd

- Direct method tends to be fast, if it converges

- Residual gradient converges, but may be slow

- Idea: Find a stable weight change close to direct



Residual algorithm: linear combination of both:
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Reinforcement
Learning

Algorithm

Counterpart of Bellman Equation (top)

Weight Change for Residual Algorithm (bottom)
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- Residual algorithms almost identical to direct
- Theoretically should be better
- Mance Harmon found them better in practice
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Function approximation system is linear:

- Value is dot product of weight and state vectors:

State 1: 1 2 0 0 0 0 0
State 2: 1 0 2 0 0 0 0
State 3: 1 0 0 2 0 0 0
State 4: 1 0 0 0 2 0 0
State 5: 1 0 0 0 0 2 0
State 6: 2 0 0 0 0 0 1

- State vectors are linearly independent

- State vectors have same magnitude (1, 2,  norms)
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Gradient descent on mean squared error:

- Define mean squared Bellman residual:

E R v vnew old= + "& $! "2

- Learning equation does gradient descent on E:
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- Guaranteed convergence to a local minimum for epoch-wise.

- Global minimum if there exists a differentiable mapping from
value functions to weight vectors



The Hall Problem:

w0 w1 w2 w3 w4 w5

Residual gradient convergence is very slow:

- Information flows the wrong direction almost as fast

- For 10 states, =0.9, mean squared residual is ill conditioned:

- Hessian eigenvalues differ by ratio of 2000
- Hessian is not diagonal, eigenvectors at 45  angles
- Some algorithms ineffective (Delta-bar-delta, quickprop)



Hand craft state vectors based on known model:

 v0  v1  v2  v3  v4  v5

Ensure each weight controls one difference:

- Value is dot product of weight and state vectors:

State 0: 1 1 1 1 1 1
State 1: 1 1 1 1 1 0
State 2: 1 1 1 1 0 0
State 3: 1 1 1 0 0 0
State 4: 1 1 0 0 0 0
State 5: 1 0 0 0 0 0

- For 10 states, eigenvalue ratio decreases from 2000 to 20



Prior knowledge of topology, not order:

 v0  v1  v2  v3  v4  v5

Slight bias to generalize the wrong direction:

- Value is dot product of weight and state vectors:

State 0: 1 0 0 0 0 0
State 1: 1 1 0 0 0 0
State 2: 1 1 1 0 0 0
State 3: 1 1 1 1 0 0
State 4: 1 1 1 1 1 0
State 5: 1 1 1 1 1 1

- For 10 states, eigenvalue ratio increases from 20 to 200



How conditioning changes with number of states

Eigenvalue Ratio vs. Number of States
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-Longer halls are even worse for 2 systems

- Longer halls are better with all prior info

-- Still levels out at ratio of 10

-- Still impractically slow



Summary:

- Direct method can blow up on simple problems

- Impractical to hand craft fast function approximation systems

- Goal: develop an algorithm that:
-- Works with any function approximator
-- Guarantees convergence like residual gradient
-- Is as fast as the direct method

- Goal theoretically met by Residual algorithms

- Mance Harmon showed it works in practice


