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A well-behaved function approximation system:

- All value functions can be represented

- Changing the value of one state with backprop:

changes neighbors by at most 2/3 as much

- Basically a lookup table plus one generalizing weight (w)



Reinforcement learning can fail to converge:
A

- Learning equation: Aw = —o(R + YView = Voua )

- Every transition updated equally often

- Learning is a special case of TD(0), Q-learning + backprop,
and incremental value iteration + backprop

-If state 6 starts high, it climbs more often than falls.

- All states/weights diverge to too



Function approximation system is linear:

- Value is dot product of weight and state vectors:

State 1:
State 2:
State 3:
State 4-:
State 5:
State 6:

- State vectors are linearly independent

- State vectors have same magnitude (1, 2, ©0 norms)
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Gradient descent on mean squared error:

- Define mean squared Bellman residual:

E = 2(R+Yvnew _vold )2

- Learning equation does gradient descent on E:

E
Aw = —oca—
ow

- Guaranteed convergence to a local minimum for epoch-wise.

- Global minimum if there exists a differentiable mapping from
value functions to weight vectors



The Hall Problem:

CHHCH A

Residual gradient convergence is very slow:

- Information flows the wrong direction almost as fast

- For 10 states, y=0.9, mean squared residual is ill conditioned:

- Hessian eigenvalues differ by ratio of 2000
- Hessian is not diagonal, eigenvectors at 45° angles
- Some algorithms ineffective (Delta-bar-delta, quickprop)

- But the direct method is fast, and does converge!



Direct Method decreases mean squared residual:

AW
AW

Direct method increases mean squared residual:

AW,
AW

- Direct method tends to be fast, if it converges
- Residual gradient converges, but may be slow

- Idea: Find a stable weight change close to direct



Residual algorithm: linear combination of both:

Aw, = dAw,, +(1-§)Aw,



Reinforcement Counterpart of Bellman Equation (top)
Learning
Algorithm Weight Change for Residual Algorithm (bottom)
V(x)= <R +yV(x' )>
TD(0)
Aw, = —a(R+ V()= V() (g £ V(x',) - 2 V(x))
V(x)=max(R+yV(x'))
Value !
Iterati
SO Aw, = —almax(R+yV(x ) - V() (9L max(R+yV(x')) -2 V(x))
OCru) = (R+y max O(x' i)
Q-learning ’
Aw, = —a(R+y max O(x', u') = Q(x,) )9y 3 max Q(x', ') - - O(x.u))
A(x.) = <R +y™ max A(x )>ﬁ +(1=L)ymax A(x,u')
Advantage
Learning Aw, = —a((R +y Y max A(x', ,u' ))ﬁ +(1 - 4)max A(x,u' ) - A(x,u))
(v awmax A(x', ,u' )37 + (1 - 3) 5 max A(x,u' ) - 2 A(x,u))

- Residual algorithms almost identical to direct
- Theoretically should be better

- Mance Harmon found them better in practice
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Function approximation system is linear:

- Value is dot product of weight and state vectors:

State 1:
State 2:
State 3:
State 4-:
State 5:
State 6:

- State vectors are linearly independent

- State vectors have same magnitude (1, 2, ©0 norms)
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Gradient descent on mean squared error:

- Define mean squared Bellman residual:

E = 2(R+Yvnew _vold )2

- Learning equation does gradient descent on E:

E
Aw = —oca—
ow

- Guaranteed convergence to a local minimum for epoch-wise.

- Global minimum if there exists a differentiable mapping from
value functions to weight vectors



The Hall Problem:

CHHCH A

Residual gradient convergence is very slow:

- Information flows the wrong direction almost as fast

- For 10 states, y=0.9, mean squared residual is ill conditioned:

- Hessian eigenvalues differ by ratio of 2000
- Hessian is not diagonal, eigenvectors at 45° angles
- Some algorithms ineffective (Delta-bar-delta, quickprop)



Hand craft state vectors based on known model:

COHHCH A

Ensure each weight controls one difference:

- Value is dot product of weight and state vectors:

State O: 1 1 1 1 1 1
State 1: 1 1 1 1 1 O
State 2: 1 1 1 1 O O
State 3: 1 1. 1 O O O
State 4-: 1 1 0 O O O
State 5: 1 0 0 O O O

- For 10 states, eigenvalue ratio decreases from 2000 to 20



Prior knowledge of topology, not order:

Slight bias to generalize the wrong direction:

- Value is dot product of weight and state vectors:

State O: O O 0O O
State 1:
State 2:
State 3:
State 4-:

State 5:
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- For 10 states, eigenvalue ratio increases from 20 to 200



How conditioning changes with number of states

TEET Eigenvalue Ratio vs. Number of States
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-Longer halls are even worse for 2 systems
- Longer halls are better with all prior info
-- Still levels out at ratio of 10

-- Still impractically slow



Summary:

- Direct method can blow up on simple problems

- Impractical to hand craft fast function approximation systems

- Goal: develop an algorithm that:

-- Works with any function approximator

-- Guarantees convergence like residual gradient
-- Is as fast as the direct method

- Goal theoretically met by Residual algorithms

- Mance Harmon showed it works in practice



