Residual Algorithms: Reinforcement Learning with Function Approximation

Machine Learning Conference July 1995

Leemon Baird

U.S. Air Force Academy baird@cs.usafa.af.mil http://kirk.usafa.af.mil/~baird

A well-behaved function approximation system:

- All value functions can be represented
- Changing the value of one state with backprop: changes neighbors by at most 2/3 as much
- Basically a lookup table plus one generalizing weight (w₀)

<u>Reinforcement learning can fail to converge:</u> - Learning equation: $\Delta w = -\alpha (R + \gamma v_{new} - v_{old}) \frac{\partial v_{old}}{w}$

- Every transition updated equally often

- Learning is a special case of TD(0), Q-learning + backprop, and incremental value iteration + backprop

-If state 6 starts high, it climbs more often than falls.

- All states/weights diverge to $\pm \infty$

Function approximation system is linear:

- Value is dot product of weight and state vectors:

State 1:	1	2	0	0	0	0	0
State 2:	1	0	2	0	0	0	0
State 3:	1	0	0	2	0	0	0
State 4:	1	0	0	0	2	0	0
State 5:	1	0	0	0	0	2	0
State 6:	2	0	0	0	0	0	1

- State vectors are linearly independent
- State vectors have same magnitude $(1, 2, \infty \text{ norms})$

Gradient descent on mean squared error:

- Define mean squared Bellman residual:

$$E = \sum \left(R + \gamma v_{new} - v_{old} \right)^2$$

- Learning equation does gradient descent on *E*:

$$\Delta w = -\alpha \frac{\partial E}{\partial w}$$

- Guaranteed convergence to a local minimum for epoch-wise.
- Global minimum if there exists a differentiable mapping from value functions to weight vectors

The Hall Problem:

$$(w_0) \rightarrow (w_1) \rightarrow (w_2) \rightarrow (w_3) \rightarrow (w_4) \rightarrow (w_5)$$

Residual gradient convergence is very slow:

- Information flows the wrong direction almost as fast
- For 10 states, γ =0.9, mean squared residual is ill conditioned:
 - Hessian eigenvalues differ by ratio of 2000
 - Hessian is not diagonal, eigenvectors at 45° angles
 - Some algorithms ineffective (Delta-bar-delta, quickprop)
- But the direct method is **fast**, and **does** converge!

Direct Method decreases mean squared residual:

Direct method increases mean squared residual:

- Direct method tends to be fast, if it converges
- Residual gradient converges, but may be slow
- Idea: Find a stable weight change close to direct

Residual algorithm: linear combination of both:

$$\Delta w_r = \phi \Delta w_{rg} + (1 - \phi) \Delta w_d$$

Reinforcement	Counterpart of Bellman Equation (top)					
Learning Algorithm	Weight Change for Residual Algorithm (bottom)					
TD(0)	$V(x) = \left\langle R + \gamma V(x') \right\rangle$					
	$\Delta w_r = -\alpha \Big(R + \gamma V(x'_1) - V(x) \Big) \Big(\phi \gamma \frac{\partial}{\partial w} V(x'_2) - \frac{\partial}{\partial w} V(x) \Big)$					
Value	$V(x) = \max_{u} \left\langle R + \gamma V(x') \right\rangle$					
Iteration	$\Delta w_r = -\alpha \Big(\max_u \big\langle R + \gamma V(x') \big\rangle - V(x) \Big) \Big(\phi \frac{\partial}{\partial w} \max_u \big\langle R + \gamma V(x') \big\rangle - \frac{\partial}{\partial w} V(x) \Big)$					
O-learning	$Q(x,u) = \left\langle R + \gamma \max_{u'} Q(x',u') \right\rangle$					
Q loanning	$\Delta w_r = -\alpha \Big(R + \gamma \max_{u'} Q(x'_1, u') - Q(x, u) \Big) \Big(\phi \gamma \frac{\partial}{\partial w} \max_{u'} Q(x'_2, u') - \frac{\partial}{\partial w} Q(x, u) \Big)$					
Advantage	$A(x,u) = \left\langle R + \gamma^{\Delta t} \max_{u'} A(x',u') \right\rangle_{\Delta t}^{1} + (1 - \frac{1}{\Delta t}) \max_{u'} A(x,u')$					
Learning	$\Delta w_r = -\alpha \Big(\Big(R + \gamma^{\Delta t} \max_{u'} A(x'_1, u') \Big)_{\frac{1}{\Delta t}} + (1 - \frac{1}{\Delta t}) \max_{u'} A(x, u') - A(x, u) \Big)$					
	$\cdot \left(\phi \gamma^{\Delta t} \underset{u'}{\xrightarrow{\partial}} \max A(x'_{2}, u') \underset{\Delta t}{\xrightarrow{1}} + \phi(1 - \frac{1}{\Delta t}) \underset{u'}{\xrightarrow{\partial}} \max A(x, u') - \underset{u'}{\xrightarrow{\partial}} A(x, u) \right)$					

- Residual algorithms almost identical to direct
- Theoretically should be better
- Mance Harmon found them better in practice

Function Approximation:

Guaranteed Convergence and Convergence Speed

Value Function Approximation Workshop Machine Learning Conference July 1995

> Leemon Baird U.S. Air Force Academy baird@cs.usafa.af.mil http://kirk.usafa.af.mil/~baird

Function approximation system is linear:

- Value is dot product of weight and state vectors:

State 1:	1	2	0	0	0	0	0
State 2:	1	0	2	0	0	0	0
State 3:	1	0	0	2	0	0	0
State 4:	1	0	0	0	2	0	0
State 5:	1	0	0	0	0	2	0
State 6:	2	0	0	0	0	0	1

- State vectors are linearly independent
 - State vectors have same magnitude $(1, 2, \infty \text{ norms})$

Gradient descent on mean squared error:

- Define mean squared Bellman residual:

$$E = \sum \left(R + \gamma v_{new} - v_{old} \right)^2$$

- Learning equation does gradient descent on *E*:

$$\Delta w = -\alpha \frac{\partial E}{\partial w}$$

- Guaranteed convergence to a local minimum for epoch-wise.
- Global minimum if there exists a differentiable mapping from value functions to weight vectors

The Hall Problem:

$$(w_0) \rightarrow (w_1) \rightarrow (w_2) \rightarrow (w_3) \rightarrow (w_4) \rightarrow (w_5)$$

Residual gradient convergence is very slow:

- Information flows the wrong direction almost as fast
- For 10 states, γ =0.9, mean squared residual is ill conditioned:
 - Hessian eigenvalues differ by ratio of 2000
 - Hessian is not diagonal, eigenvectors at 45° angles
 - Some algorithms ineffective (Delta-bar-delta, quickprop)

Hand craft state vectors based on known model:

$$v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5$$

Ensure each weight controls one difference:

- Value is dot product of weight and state vectors:

State 0:	1	1	1	1	1	1
State 1:	1	1	1	1	1	0
State 2:	1	1	1	1	0	0
State 3:	1	1	1	0	0	0
State 4:	1	1	0	0	0	0
State 5:	1	0	0	0	0	0

- For 10 states, eigenvalue ratio decreases from 2000 to 20

Prior knowledge of topology, not order:

$$v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5$$

Slight bias to generalize the wrong direction:

- Value is dot product of weight and state vectors:

State 0:	1	0	0	0	0	0
State 1:	1	1	0	0	0	0
State 2:	1	1	1	0	0	0
State 3:	1	1	1	1	0	0
State 4:	1	1	1	1	1	0
State 5:	1	1	1	1	1	1

- For 10 states, eigenvalue ratio increases from 20 to 200

How conditioning changes with number of states

-Longer halls are even worse for 2 systems

- Longer halls are better with all prior info
 - -- Still levels out at ratio of 10
 - -- Still impractically slow

Summary:

- Direct method can blow up on simple problems

- Impractical to hand craft fast function approximation systems

- Goal: develop an algorithm that:
- -- Works with any function approximator
- -- Guarantees convergence like residual gradient
- -- Is as fast as the direct method
- Goal theoretically met by <u>Residual</u> algorithms
- Mance Harmon showed it works in practice