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Abstract

Foveal vision features imagers with graded
acuity coupled with context sensitive sensor gaze
control, analogous to that prevalent throughout
vertebrate vision.  Foveal vision operates more
efficiently than uniform acuity vision because
resolution is treated as a dynamically allocatable
resource, but requires a more refined visual
attention mechanism.  We demonstrate that
reinforcement learning (RL) significantly
improves the performance of foveal visual
attention, and of the overall vision system, for
the task of model based target recognition.  A
simulated foveal vision system is shown to
classify targets with fewer fixations by learning
strategies for the acquisition of visual
information relevant to the task, and learning
how to generalize these strategies in ambiguous
and unexpected scenario conditions.

1 OVERVIEW OF FOVEAL VISION

In contrast to the uniform acuity of conventional machine
vision, virtually all advanced biological vision systems
sample the scene in a space-variant fashion.  Retinal
acuity varies by several orders of magnitude within the

field of view (FOV).  The region of the retina with
notably high acuity, called the fovea, is typically a small
percentage of the overall FOV (<3%), centered at the
optical axis (Levine 1985).  The wide FOV, supported by
lower peripheral acuity, and the high acuity fovea impose
a much smaller data set (frame size) and permit a much
faster frame rate than supporting the entire FOV
uniformly at high acuity.  For example, the retinotopic
regions of the human visual system would be 15,000
times larger if the retina supported maximum acuity
throughout its FOV (Yeshurun 1989).  Inherent with
space-variant sampling is the context-sensitive
articulation of the sensor’s optical axis, whereby the fovea
is aligned with relevant features in the scene (Yarbus
1967).  These features can be targets (e.g., predators or
prey), or classification features on the targets themselves.
Space-variant sampling and intelligent gaze control
together with multiresolutional image analysis are
collectively called foveal vision.

Through variable acuity and gaze control, biological
systems treat signal and computational bandwidth as a
dynamically allocatable resource.  Vision functions direct
sensor gazing in a process called foveation.  This process
provides a feedback path whereby low-level functions
operate in a context-sensitive fashion (Figure 1), i.e., the
vision system attempts to neither oversample, which
wastes system resources, nor undersample, which reduces
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Figure 1:  Data Path in Foveal Vision



system performance.  The filtering of irrelevant data is
performed at the earliest stage of the vision process,
namely at the sensor itself, reducing the computational
and data bandwidth over the entire vision data path.

Foveal vision is well-suited for applications where (1)
scenario conditions, such as target range and kinematics,
cannot be well controlled or anticipated, or (2) the system
must simultaneously perform very different tasks, such as
target tracking, object recognition, and navigation.  It is
often unfeasible to meet the FOV and spatiotemporal
resolution requirements of all these tasks in all these
conditions with a single uniform acuity vision system.

The premise of foveal vision is that the benefit from
processing less (irrelevant) information per fixation is
greater than the cost of making multiple refined fixations
(i.e., saccades).  Consequently, a fast intelligent robust
visual attention mechanism that minimizes the number of
fixations is necessary to acquire the aforementioned
performance benefits of foveal vision.

The technical objective pursued by this research is the
reduction in the overall number of saccades required to
complete the recognition of a detected region of interest
through the incorporation of reinforcement learning (RL)
in the foveal vision attention mechanism.  Target
recognition is treated as a classification problem with a
confidence threshold stop rule.  This task requires an
intelligent visual attention mechanism that can select
fixation points whose interrogation yields as much visual
information as possible relevant to class discrimination.
In other words, the attention mechanism must be able to
accurately predict the relevance of visual information
expected from an interrogation, and use these predictions

to select a minimum length sequence of gazes whose
acquired visual information, when integrated, permits the
classification of the detected region of interest at
threshold confidence (or better).

The foveal retinotopology used in this work is illustrated
in Figure 2.  It consists of r concentric rings about a
fovea.  Each ring is d receptive fields wide, the fovea is of
size 4d×4d, and the size of the receptive fields in the i’th
ring from the fovea is 2i×2i (in terms of fovea pixels).
The size of a receptive field is proportional to the L∞
distance from its ring to the lattice center.  Localized
acuity is thus inversely proportional to distance from
lattice center, and the acuity gradient is inversely
proportional to d.  Table 1 gives the ratio of central to
peripheral acuity, and the bandwidth compression factor fc

(the ratio between the number of pixels in a uniform
acuity image to the number of receptive fields in a foveal
image with the same FOV and maximum resolution) for
different ring counts.  The rectilinear arrangement of
receptive fields, the linear roll-off in acuity, and the
power of two steps in acuity support computationally
efficient multiresolution image processing.  This approach
to multiacuity sampling and processing is called
hierarchical foveal machine vision (HFMV) (Bandera and
Scott 1989, 1992).

The problem of visual attention is amenable to machine
learning solutions.  Classical or analytical solutions are
very difficult due to unpredictable variability in scenario
conditions (e.g., object range and orientation) and the
model database (e.g., the addition of new classes).  RL is
a practical machine learning solution because it can train
on the same performance feedback used by the visual

a.  Lattice with five rings about the
fovea (d=1, r=5)

b.  Lattice with half the acuity
gradient (d=2, r=4)

c.  Lattice with 1/4 the acuity
gradient (d=4, r=3)

Figure 2:  Examples of HFMV Retinotopologies

Table 1:  Bandwidth Compression and Central-to-Peripheral Acuity Ratio for Different Numbers of Acuity Steps

r 0 1 2 3 4 5 6 7 8 9

acuity 1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256 1:512

fc 1 2.3 6.4 19.7 64 216 745 2621 9,362 33,825



process itself, namely the instantaneous recognition
confidence.  This simple scalar signal gauges the
performance of the recognition process, serves as the
process stop rule, and can serve as the reinforcement
signal.  It can be expressed in many different forms, such
as a class likelihood ratio (to be maximized) or as the
entropy of the class probabilities (to be minimized).

2 VISUAL ATTENTION AS AN
OPTIMIZATION PROBLEM

Foveal object recognition can be posed as a task of
sequentially interrogating the discriminant features of the
object with high resolution.  This is not to say that
recognition is performed exclusively with the fovea; low
acuity wide area measurements such as object aspect ratio
and orientation can be performed efficiently in a single
gaze with peripheral vision.  Model-based foveal
recognition must satisfy two important functional
requirements:

1. A target model must be decomposed into salient
features that are localized in scale-space such that they
have a small spatial extent ×  spectral bandwidth
product (e.g., detailed and small, like a corner or
marking on the target, or large and coarse, like the
target’s aspect ratio).  Visual features in naturally
occurring fractal scenes typically meet these criteria.

2. Class likelihood must be expressed in terms of the
probability of detection of target features.  Different
target features may be detected with different gazes, so
a mechanism is required for the temporal integration
of partial evidence.

The relevance of a fixation point to the task of
classification is a function of the model database, which
defines the different classes and hypothesizes the location
of object features in the scene.  Note that the model
database features themselves have varying relevance to
the classification task.  An object model tends to be
composed of salient features that describe that object.
The features important to the task of classification are not
those prominent in an object, but those that distinguish
that object from the other objects in the model database.
Relevance is also a function of accrued evidence, which
may favor certain classes more heavily than others, and of
the gaze history (no sense in revisiting a scene feature,
unless in very noisy or kinematic conditions).

The multiresolution nature of foveal vision imposes a
variable confidence in the detection of a feature that is a
function of the localized acuity registering the feature (in
addition to feature attributes).  This accrued evidence can
be represented as a list or topographic map of detected
feature locations and the confidence associated with each
feature detection.

The framework we employed for the foveal machine
vision recognition is a post-binding model-based
framework that assumes a user supplied model library that
defines saliency in the different object classes, and a
solution to the binding problem.  In other words, the
initial detection of an object is assumed to acquire
sufficient information for the computation of a scale and
pose for each model in the model database that best
corresponds to the object detection.  This post-detection-
pre-recognition solution to the binding problem associates
every feature of every model in the database with its
maximum likelihood location in space, and permits visual
attention to treat features from the model database as
potential fixation points for interrogation.

The framework integrates the information from multiple
saccades in order to classify a detection.  After every
saccade, the recognition process outputs an a-posteriori
target class probability mass distribution function.  This
standard recognition process output permits using the
entropy of integrated perception as a measure of visual
information relevance.  The entropy E is defined as

E = − P i( ) log2 P i( )( )
i=1

M

∑ (eq. 1)

where M  is the number of classes, and P(i) is the
probability that the detection belongs to the i’th class.  By
using log to the base two, entropy is expressed in bits.

Entropy is maximum when all probabilities are the same
(perceptual ambiguity is maximum), and is minimum
when one probability is one and all the rest are zero
(perceptual certainty is maximum).  Entropy lowers when
information is acquired that helps in the classification of
an object.  The value of a saccade is defined as the
decrease in entropy upon the processing of the foveal
sensor frame.  This value serves as a reinforcement signal
to the RL system.

In this work, only spatially localized high bandwidth
features such as corners will be considered as model
features.  Visual attention is less critical for the
acquisition of lower acuity features, as these can be
sufficiently registered by peripheral vision.  For example,
the model of each object class can be a semantic net of
corners which is fit over a detected “blob” in the scene
(Figure 3).  As the blob is interrogated, a confidence
measure is associated with each feature in the model
database that indicates the presence or absence of that
feature.  From these feature confidence measures, the
target probability vector P is derived.  The collection of
all confidence measures for all features is treated as the
state of the recognition process.  This state representation
fulfills two key functions:  it represents all acquired
relevant visual information, and it can be used to compute
the entropy of the temporally integrated perception.



Model #1 Model #2 Model #3 Composite

Figure 3:  Decomposition of Objects into Vertices

The visual attention mechanism selects a feature from the
model database for interrogation given the state of the
recognition process.  This selection process is learned
through the use of the residual form (Baird 1995, and
Harmon, Baird, and Klopf 1995) of Q-learning (Watkins
1989), which we will refer to as residual-Q.  The
discounted cumulative entropy (i.e., the discounted
cumulative reinforcement or utility) is defined as

Rt = γ krt+k
k=0

∞

∑ (eq. 2)

where rt is the reduction in classification entropy after the
transition from time t to time t+1, and 0≤γ≤1 is the
discount factor.  Residual-Q  attempts to learn a Q
function that yields the optimal policy (i.e., a sequence of
actions whose invoked reinforcement signals maximize
Rt) when being greedy with respect to state-action pairs.
The objective of the visual attention mechanism is to
minimize its the discounted cumulative perception
entropy.

The model database is implemented as a table describing
the hypothesized location of each feature of each object in

a 2-D space (binding normalized).  Each of M models is
described by Ni, i=1, ..., M , features, for a total of N
features.  Each feature has a distinct index (1, ... , N), and
different models may have features in common.  The
discriminating power of a feature (i.e., the reduction in
entropy caused by interrogating the feature) diminishes as
more models incorporate the feature.  None of the Ni

features of a given model share the same location.

3 FOVEAL OBJECT RECOGNITION
MODEL

3.1 FEATURE DETECTION

The foveal object recognition model is illustrated in
Figure 4.  The feature detection module accepts a scenario
file that specifies the location in space of the visible
features of the actual object, and the location in space of a
fixation point.  The output of the feature detection module
is a vector Vf  with N  elements, each describing, with a
scalar in the range of -1 to 1, the evidence detected in the
current sensor frame corroborating the existence of each
feature in the model database.  The magnitude of the
value indicates the level of confidence in the evidence of
the feature, and the sign indicates whether the evidence is
corroborative (positive) or not.  A value of 1 in the i’th
element of Vf  indicates that the i’th feature of the model
database has been unambiguously confirmed as present in
the scene.  A value of -1 indicates that feature has been
unambiguously confirmed as absent in the scene.  A value
of 0 indicates no visual information in the current sensor
frame substantiating or refuting the existence of the
feature (e.g., the feature is outside the imager’s FOV).
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Figure 4:  Block Diagram of Foveal Object Recognition Model



For the simulations presented in this paper, the ambiguity
of a feature detection is computed as

V i
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(eq. 3)

where ri is the number of the ring (level of acuity in the
FOV) covering the location of the i’th feature (the fovea
is ring 0), ri>rmax represents the case where the feature
location is outside the sensor’s FOV, and s is 1 or -1
depending on the presence or absence of that feature in
the scenario.  The ring number is computed from the
displacement (∆i,x,∆i,y) of the i’th feature position and the
current sensor fixation point
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where x is the truncation operator.

3.2 PERCEPTION INTEGRATION

The integrated perception builder integrates the
information in Vf  from the current frame with that from
previous frames into vector V  which represents the
system’s integrated perception and the state of the
recognition process.  The integrated perception simply
retains the most confident evidence obtained on each
feature:

V i
V i V i V i

V i V i V i
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(eq. 5)

As with Vf, the elements of V range in value from -1 to 1,
with magnitude representing feature measurement confi-
dence and sign indicating presence or absence.  The initial
value of the integrated perception is V(i)=0, i=1, ..., N
(i.e., maximum system ambiguity).

3.3 OBJECT RECOGNITION FROM
FEATURES

To generate the class likelihood vector (from which
system entropy can be calculated) from the integrated
perception vector, a backpropagation net (Rumelhart et
al., 1986) is trained on the potential states of the
integrated perception.  This approach consists of a net
with N  inputs, M  outputs, and a hidden layer with
(M+N)/2 nodes.  A training data set is formed by

compiling a list of possible integrated perception state
vectors given some class as true, for all possible classes.
The net is trained by driving it with these state values, and
presenting it with the associated true class (+1 for the true
class, -1 for the rest).

As an example, consider a simple two-class, three-feature
scenario, with one class described by one feature and the
other class described by the same feature plus another two
features.  The training data set is

Class Input Pattern Desired Output
1 [-1 -1 1] [1 -1]
2 [1  1  1] [-1 1]

The net response to different integrated perception states
for this simple example is given in Table 2 below.  The
net output is treated as a class confidence vector C, from
which heuristic class discrimination and entropy measures
(after normalization into a probability distribution
function) can be computed.  The net generalizes for
incomplete or ambiguous input patterns.

Table 2:  Object Recognition Net Response to Perceptions

Ambiguous
Perception

(valid for both
classes)

Class 1
Confidence

Class 2
Confidence

0  0  1 0.108919 0.130706

Perceptions
from Class 1

Scenarios

Class 1
Confidence

Class 2
Confidence

-1  0  0 0.982249 -0.942880
 0 -1  0 0.995989 -0.982058
-1 -1  0 0.998828 -0.995255
-1  0  1 0.989553 -0.969371
 0 -1  1 0.997631 -0.990780
-1 -1  1 0.998990 -0.996125

Perceptions
from Class 2

Scenarios

Class 1
Confidence

Class 2
Confidence

 1   0   0 -0.996765 0.995901
 0   1   0 -0.997766 0.997149
 1   1   0 -0.993702 0.990032
 1   0   1 -0.987956 0.981961
 0   1   1 -0.998380 0.998181
 1   1   1 -0.995156 0.993976
 0  .25  0 -0.119307 0.518573
.25  0   0 -0.003283 0.418612
.75  0  .25 -0.808777 0.936406
 0  .25 .25 0.059788 0.389670
.75  0  .25 -0.848022 0.947849
 0  .75  0 -0.952402 0.988224



3.4 REINFORCEMENT AND STOP RULE

This module normalizes the class confidence vector C
into a probability distribution function (PDF) vector P
such that all the elements are in the range (0, 1) and sum
to 1.  From this PDF, the recognition entropy is computed
(equation 1).  The entropy is compared against a stop rule
threshold.  It is also subtracted from the previous entropy;
the reduction in entropy is the reinforcement signal used
to drive Q-learning.

3.5 GAZE CONTROL

A reinforcement learning system implementing the
residual form of Q-learning serves as the gaze control
mechanism.  The Q  function is implemented with a series
of backpropagation networks, each computing the state-
action pair utility for a particular action (Figure 5).  The
update equation for the residual-Q algorithm is given in
equation 6, where φ is the weighting factor between the
residual gradient and direct method update vectors.

∆w R Q x u Q x u

w
Q x u

w
Q x u

u

u

= − + ( ) − ( )( )
× ( ) − ( )
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   (eq. 6)
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Figure 5:  Parallel Q-Function Approximator

4 EXPERIMENTS AND RESULTS

The architecture described above was demonstrated in a
simulation with a database consisting of ten classes and
20 distinctly situated features.  Models were purposefully
defined with considerable correlation to exercise the
system’s ability to gauge and react accordingly to

differences in discriminating power among features
(Table 3, where 1 indicates inclusion of a feature in the
model).  Each model has on average 10 features, and any
one feature is common on average to five classes (the
models were created with a random process that assigned
any feature to any class with a probability of 50%).  The
20 features are uniformly distributed in 2-D space such
that for any fixation point the fovea can register no more
than one feature (although lower acuity rings can detect
more features with lower confidence).

The reduction in entropy (En-1-En) was used as the
reinforcement signal.  Other parameters follow: discount
factor γ=0.99, learning constant α=0.9, the residual
coefficient φ=0.3, entropy threshold (stop rule) et=0.3,
and noise source [-βT, +βT], T=En-et, β=0.5 added to the
reinforcement signal to invoke exploration (Lin 1992).

Table 3  Model Database with 10 Classes and 20 Features

1 2 3 4 5 6 7 8 9 10
1 1 1 0 1 0 0 0 1 0 1
2 1 1 0 0 0 0 1 1 1 1
3 1 0 1 0 1 1 1 0 0 1
4 0 0 1 1 0 0 1 1 1 1
5 0 1 1 0 0 1 0 0 0 0
6 0 0 1 1 0 1 1 1 0 1
7 0 1 0 1 0 1 0 0 1 1
8 0 1 0 1 1 1 0 0 1 1
9 1 1 1 1 1 0 0 0 1 1
10 1 0 1 0 0 1 0 0 0 0
11 1 1 0 1 0 1 1 1 1 1
12 1 0 0 1 0 0 0 0 0 0
13 1 1 0 0 0 1 1 0 1 0
14 0 0 0 1 1 1 1 1 0 1
15 0 1 1 0 0 0 1 0 0 0
16 1 1 1 1 1 0 0 0 0 0
17 1 0 0 1 0 0 1 0 0 0
18 0 0 0 1 0 0 0 1 1 1
19 0 1 1 0 1 0 1 1 1 1
20 0 1 1 0 1 1 1 1 1 1

Figure 6 illustrates how learning reduces the number of
saccades required to classify targets of class 1, 3, and 6.
Each trial consists of the recognition of a target of the
given class, and all classes are equiprobable.  The first
two cases are representative of good performance
improvement through learning, while the third case is
representative of limited performance improvement.

The learned saccade sequences after 100 trials (each trial
consisting of a complete sequence of saccades resulting in
classification) are given in Table 4 for the 10 different
classes.  The table gives the indices of the model database
features interrogated for each class.  The system learns to
first interrogate the 16th feature in the database.  If that
feature is detected, it proceeds to interrogate the 12th
feature.  Otherwise, if the 16th feature is confirmed
absent, the system interrogates the 6th feature.  The



system continues to implement the learned strategy in this
fashion until the target is classified (entropy threshold is
met).  Some targets are classified in as little as four
interrogations, while the 10th class requires 14
interrogations.  This variability in saccade sequence is due
more to the strategy than to the model, since statistically
all the models are of the same complexity.  Note how
detecting the absence of a feature is just as significant as
detecting its presence.
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Figure 6:  Fixations Required for Recognition

Table 4  Action Tree Learned Using Only the Fovea

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 16 12 6 3
2 16 6 2 12 3 1 0
3 16 6 3 12 2
4 16 12 2 3 14 1 6
5 16 6 3 12 2 1 14 0 5 19 8 9
6 16 6 2 12
7 16 12 6 3 14 2 1 0 5 19 8
8 16 6 3 12 2 1 14
9 16 6 2 12 3 14 1 0 19 5
10 16 6 2 12 3 14 1 0 5 19 8 9 17 11

The above experiment was performed using only the
fovea to impose the execution of many saccades and the
optimization of these relatively long sequences.  The
experiment was repeated with the same RL parameters,
but with a different foveal retinotopology.  Three rings
were added to implement graded acuity across the FOV.
Neither the total number of receptive fields nor acuity
along the optical axis were changed; fovea size was
sacrificed for lower resolution, wider FOV perifoveal and
peripheral vision.

The perifoveal and peripheral vision of this new
retinotopology was able to detect additional features in
any one glance, but with less acuity than the fovea. The
RL based visual attention mechanism succeeded in using
this partial, or ambiguous, information on the presence
and absence of features in the scene to further reduce the
number of saccades.  The action tree formed in this
experiment is presented in Table 5.  Unlike the action tree
of Table 4, which is traversed fixation at a time by the
presence or absence of a single interrogated feature, the
action tree of Table 5 is traversed fixation at a time by the
complete and partial evidence of several features.

Randomness in the initial action in Table 5 (interrogating
feature 18 versus feature 12) is from the temperature in
the utility selector.  The average number of interrogations
was reduced from 8.1 for the uniform acuity
retinotopology to 4.9 for the four acuity retinotopology.

Table 5  Action Tree Learned With Peripheral Vision

1 2 3 4 5 6 7 8 9
1 18 12 6
2 18 6 12 11 9 19 8
3 18 12
4 12 18 6 19
5 18 12 6 19 11 9 8 0 14
6 12 6 8
7 18 6 12 11 9
8 18 12 6
9 12 6 18 19 9 1
10 18 12 6 19 9 11 8

The uniform acuity experiment was repeated using a
random gaze controller which selected features randomly
and non-repeatedly during a trial.  The average number of
interrogations required to recognize a target (all targets
equiprobable) was 13.2, which is 2.7 times greater than
the number interrogations required by the foveal system.

Consistency in saccade sequences is an emergent
behavior characteristic of human visual attention.  This
same behavior is exhibited by the RL simulations
presented here.  Specifically, the system seems to learn
pieces of sequences, and performs the interrogations
within these subsequences in a consistent order.
However, the order in which the subsequences are
connected to form the overall sequence is not necessarily
consistent, and is (visual) data driven.  Consistent
behavior is more pronounced at the beginning of a trial
than at the end, in part because entropy behaves as an
exponentially decreasing function over time.  The initial
interrogations of a trial acquire information that is new to
the system and which yields strong reinforcement.  The
final interrogations, particularly when the entropy
threshold stop rule is low, receive little reinforcement to
motivate the retention of sequence order.



5 FUTURE WORK

The experiments documented here assume equiprobable
classes.  One strong feature of RL is that it will learn
different strategies for different a-pr ior i class
probabilities.  We expect that once a strategy has been
learned for a particular class distribution, RL will quickly
adapt to changes in the scenario whereby some classes are
encountered more frequently than others.  This hypothesis
is being tested.

The experiments performed to date also assume no
penalty for gazing.  However, in a real-time system with
mechanically articulated cameras, any gazing action has
an associated cost.  This cost includes energy, and in the
case of saccades, it also includes the duration of the
saccade, during which the visual system is rendered
ineffective.  Cost should thus be a monotonically
increasing function of saccade length (i.e., the amount of
displacement of the optical axis).  Experiments will be
conducted with the utility of an action attenuated by the
foveal displacement of the action.  This technique is
expected to further motivate consistent behavior by
favoring contiguous short saccades over long saccades,
and in effect reducing the strongly connected nature of
action space.

The application of RL presented in this paper drives the
active vision system into making confident classifications.
This objective is separate from processing a
reinforcement that gauges classification correctness (i.e.,
“right” or “wrong”).  The probability of correct
classification increases as the entropy threshold is
lowered, but if the threshold is too low and the image
quality is too poor, the stop rule may never be reached.
The integration of classification correctness with
classification confidence will also be investigated.

A long-term objective is to demonstrate the potential of
RL in the context of a practical foveal machine vision
prototype.  This objective not only furthers the
commercialization of RL, but also of hierarchical foveal
machine vision, whose visual attention (and overall)
performance is substantially improved through the use of
RL.  Future research will use a real-time platform op-
erating in a practical nondeterministic scenario that
typifies a commercial application of HFMV.
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