
One-Step Neural Network Inversion with PDF
Learning and Emulation

Leemon Baird

Department of Computer Science
US Air Force Academy

Colorado Springs, CO 80840
www.leemon.com

David Smalenberger
Department of Computer Science

US Air Force Academy
Colorado Springs, CO 80840

Shawn Ingkiriwang
Department of Computer Science

US Air Force Academy
Colorado Springs, CO 80840

Abstract — We present two new types of neural networks (both
of which can be trained with ordinary error backpropagation)
and we present a new algorithm for learning a probability
density function (pdf) from example vectors. It is normally
difficult to invert a neural network, but for the new bijective
neural network, it is efficient to find an input producing any
desired output, and such an input is guaranteed to exist and to
be unique. Furthermore, it can be used as one component in
building a pdf neural network, which is a neural network with a
nonnegative output, and for which it is guaranteed that the
integral of the output is exactly 1.0 (as in a pdf function). Both
of these can be used for supervised learning using standard
error backpropagation. Finally, the new pdf learning
algorithm is capable of using those networks to learn a pdf
given i.i.d. samples drawn from that pdf, and to then generate
new vectors from the learned pdf. This, in turn, allows
inversion of a function with non-unique inverses, where each
inverse is generated with just a single evaluation of the
network.

I. BACKGROUND

This paper presents a single system, whose components
address two unrelated problems that have been widely
studied: inverting neural networks, and learning pdfs.

It is a well-studied problem to find an input for a given
neural network so that it will give a desired output. For
example, to find x such that f(x) has a given value, where f
is a given neural network that has already been trained.
There is an extensive literature on this problem (see [1] and
[2] for surveys of the field). There are many applications
where this would be useful, such as inverse kinematics for
robotics [3], or model reference control [4], or optimizing a
design where the utility function has been learned by a
neural network [5]. Unfortunately, for a typical Multilayer
Perceptron (MLP) neural network, this is a difficult
problems. Algorithms have been proposed for this problem
that perform gradient descent on the input vector [6] [7], or
use genetic algorithms [8] [9], or use a number of other
approaches. All of these techniques have three problems:
finding a single inverse requires many evaluations of the
network, the result is only an approximation of the correct
answer, and it may not return an answer at all, even if one

exists. One obvious solution would be to have the network
learn the inverse of the function in the first place, taking f(x)
as an input, and giving x as an output. However, if different
x vectors have the same f(x) value, then an inverse network
would end up learning the average of the two rather than
learning one or the other.

This can be addressed by both learning and emulating a pdf.
If y=f(x), and the network will be trained with (x,y) pairs,
then the network might be trained to learn the probability
distribution pdf(x|y). Merely learning the distribution is
insufficient, though. It should be able to efficiently
generate new x vectors according to that distribution given a
y vector. In that case, each x it generates is an inverse value
for y, and so the network would be efficiently inverting a
non-invertible function. Unfortunately, it is not clear how
to both learn the pdf and generate the vectors. If something
like a common mixture of Gaussians model is used [10]
[11], then it will be difficult to capture complex
nonlinearities in a high dimensional space. On the other
hand, if a neural network is used to learn the conditional
probabilities, it is not obvious how to efficiently generate a
new x vector given y. Such a solution would have further
applications beyond just inverting neural networks, such as
in recognizing anomalies during data mining. Or a
reinforcement learning system might first use real-world
data to learn a stochastic model of the MDP to be controlled
(which is a pdf of next state given current state and action),
and then perform reinforcement learning on that model.
The next two sections develop such a system: the pdf neural
network, whose largest component is the bijective neural
network..

II. BIJECTIVE NEURAL NETWORK

The bijective neural network (BNN) is shown in figure 1. It
is a multilayer neural network whose input is n real numbers
in the open interval (0,1), and whose output is also n
numbers in (0,1). It is similar to a standard multilayer
perceptron in that it consists of multiple layers of nodes,
each of which takes a weighted sum of its inputs, adds a
bias, then applies a nonlinear function to it. The BNN
differs from the standard neural network in three ways.

First, a BNN uses a different nonlinear function in the
nodes. Instead of using the traditional nonlinear function:

f(x)=tanh(x)
it uses this new one:

f(x)=arcsinh (c+sinh (x))
where c is an additional weight to be learned. Second, the
BNN requires processing on its inputs and outputs. The
function y=1/2 tanh(x)+1/2 is applied to every output to
squash it down to the interval (0,1), and its inverse is
applied to every input. Third, a BNN with n inputs will
always have n outputs and n nodes in each layer. This
implies that large networks will be deep, with many layers,
rather than broad and shallow as is usually the case in
traditional neural networks.

Note that the nonlinear function is not numerically stable as
written. The inner sinh can generate very large numbers
before they are reduced to reasonable size by the arcsinh.
However, if the hyperbolic functions are written as
exponentials, terms cancel and can be factored to ensure
good stability. The function f(x,c) can be calculated safely
in C as:

if(x>0) {
 t=0.5+c*exp(-x)-exp(-2 * x)/2;
 return x+log(t+sqrt(exp(-2 * x)+t * t));
} else {
 t=-0.5+c * exp(x)+exp(2 * x)/2;
 return x-log(-t + sqrt(exp(2 * x) + t * t));
}

The weights between any two layers in the BNN can be
thought of as an n by n matrix. As long as all the weight
matrices are nonsingular, the BNN is guaranteed to be a
bijection from the input hypercube to the output hypercube.
This is obvious from the construction of each layer. The
inputs are all passed through the inverse hyperbolic tangent.
That function is a bijection from its input (which is between

0 and 1, exclusive) and its output (which is between –� and
�). So it is a bijection from the unit hypercube to the entire
n-dimensional Euclidean space. The first layer of weights
and biases then performs an affine transformation, which is
a bijection from the n-space to itself. The nonlinearities in
the first layer also perform a bijection from the n-space to
itself. This continues for each layer of the network, until
the outputs are passed through the hyperbolic tangent
functions, which perform the final bijection from the n-
space to the unit hypercube. Therefore, the neural network
as a whole is guaranteed to be a bijection from the unit
hypercube to itself.

This property only holds when the matrices are nonsingular.
However, if the initial weights are chosen randomly from
small ranges, then with probability 1, the matrices will all
be nonsingular. Similarly, after any number of steps of
backpropagation with momentum, they will still be
nonsingular with probability 1.

Given any set of (nonsingular) weights, the network will
implement a nonlinear function that is easy to invert. In
fact, the inverse function will be a network identical to the
original, but with different weights. It can be found by first
swapping the order of the weights. In other words, the
weights in the first layer move to the last, the weights in the
second layer move to the second-to-last, and so on. Then,
each layer must be transformed to implement the inverse
function. The weights in a layer can be viewed as a matrix
W of weights on the connections, and a vector b of all the
biases:

y = W x + b
The inverse of that transform is simply:

x = W-1 y + (-W-1 b)
So the connection weights can be replaced with W-1, and
the biases can be replaced with (-W-1 b). Finally, each of
the nonlinear functions must be replaced by its inverse. It is
clear that the inverse of the function:

y = arcsinh (c+sinh (x))

is the function:

x = arcsinh (-c+sinh (y))
which means that the nonlinear function can be inverted by
simply negating the weight c.

It is interesting that the network is so easy to invert. Given
a set of weights, the cost to invert the network is essentially
just the cost of doing an n by n matrix inversion for each
layer. Once this work is done, the inverse network can be
evaluated many times, with each evaluation being done just
as efficiently as evaluation of the original network would
have been. If the network is very deep, then the original
function can be extremely nonlinear and complicated, yet its
inverse will always be very efficient to calculate.

w312
w321

w321
w311

w221

w211

w121

w111

w212
w221

w112
w121

s11 s21 s31 s41 y1 x1

x2 s12 s22 s32 s42 y2

Figure 1. Bijective Neural Network (BNN), with
inputs x, outputs y, internal signals s, and
weights/biases w, b, and c. The number of nodes per
layer must equal the number of inputs and outputs.

()

() 2
1

42
1

1

1
1

tanh

sinharcsinh

12tanh

+=

�
�
�

�
�
�
�

�
��
�

�
��
�

� ++=

−=

�+

−

jj

k
ijikjijijji

jj

sy

swbcs

xs

Because the network is made entirely of continuous
functions, it can be trained using ordinary backprop with
momentum. The only difference between backprop on a
traditional network and backprop on a BNN is that the
nonlinear functions in the nodes are different, so their
derivatives will be different. Therefore the BNN can be
implemented by making only a few small changes to
existing neural network code. Because of the similarities,
the BNN can take advantage of most of the techniques used
with traditional networks, such as constraining some
weights to remain equal, as in a convolutional network [12].

III. PDF NEURAL NETWORK

The pdf neural network (PNN) is shown in figure 2. It is a
network with n inputs and 1 output. The inputs are each in
the interval (0,1), and the output will always be
nonnegative. In addition, when the output is integrated over
all of input space, the integral is always exactly 1
(assuming, as before, the weight matrices are nonsingular).
There may be a number of uses for a network that always
has an integral of 1, but the most obvious use is for learning
pdf functions. A pdf is nonnegative everywhere, and
integrates to 1.

The PNN is formed from a BNN by adding one additional
calculation. The input to the PNN is passed to the BNN,
which calculates some output (which is ignored). The PNN
then calculates the Jacobian across the BNN. The Jacobian
is an n by n matrix formed from the partial derivatives of
each output of the BNN with respect to each input. The
PNN then outputs the absolute value of the determinant of
that matrix.

Call the absolute value of the determinant of the Jacobian of
a function its expansion. The output of the PNN is simply
the expansion of the BNN. This is easily calculated as the
product of the expansion of each layer of the BNN. The
expansion of a linear transform is the determinant of the

weight matrix. The expansion of a layer of nonlinearities is
the product of the derivative across each nonlinearity in that
layer. These facts make the expansion of a network easy to
calculate, and so the PNN is easily built from a BNN.

The PNN can be used to represent a continuous pdf,
because its output is always nonnegative and integrates to 1.

Because all its functions are continuous, it can be trained
with ordinary backprop with momentum. All that is
necessary is a training set of input vectors x, and desired
output values pdf(x). Once the network has learned the pdf
function, it can be given some new x vector, and it can
calculate the value pdf(x). If the pdf(x) is low, then x is a
surprising, anomalous, unusual vector. Detecting this can
be useful in areas such as data mining.

However, the trained network can also serve an additional
purpose. A random number generator can generate random
vectors uniformly in the unit hypercube. If these vectors are
passed through the inverse of the BNN inside the PNN, then
the resulting vectors will be distributed according to that
pdf. This is a remarkable result. A traditional neural
network can learn a pdf through supervised learning, but
then all it can do is evaluate pdf(x) for a given x vector. It
cannot generate new x vectors according to that pdf. A
traditional network might be trained to give the probability
that a given piece of music belongs to a given musical style,
but that does not automatically give it the ability to compose
new music of that style. A PNN can compose new vectors
with whatever pattern was present in the training vectors.
Composing a new vector is just as efficient as evaluating the
pdf(x) for a single x vector.

Note that it is easy to modify the network for conditional
distributions pdf(x|y) rather than just pdf(x). A second
neural network can be constructed that is purely a function
of y, and which is made up of any types of neurons (e.g.
sigmoidal or radial basis functions) combined in any

Figure 2. Pdf Neural Network (PNN), with n
inputs x, one output z, and the same weights as
the BNN inside it. The output of the BNN is
discarded. The output of the PNN is the
expansion of the BNN.

BNN x y

PNN

z
z = |determinant(Jacobian(BNN))|

Figure 3. The Pdf Learning Algorithm. Both calls to
backprop adjust the same weights, and use the same
learning rate and momentum. This can work with any
neural network, but if a PNN is used to learn the pdf, it
can then generate new vectors according to that pdf.

Pdf learning algorithm

 - Loop

- Generate x randomly with uniform probability
- Propagate x through the network to get the output z
- Call backprop to train the network, with a "desired

output" of 0
- Set x to a new vector generated by the target pdf to

be learned
- Propagate x through the network to get the output z
- Call backprop to train the network, with a "desired

output" of z+1

number of layers. The output of some of these neurons can
then feed in to the sums in the pdf network. During
training, the x part of a data point is presented to the pdf
network, the y part is presented to the other network, and
then they feed forward and are trained as if they are one
network. Once trained, the combined network can be given
a y vector, and can generate new x vectors according to the
learned distribution pdf(x|y).

It will now be shown that the PNN actually does have the
properties claimed above. Suppose that a tiny ball is chosen
within the input hypercube. If each of the vectors in the ball
is passed as input to the BNN, then all the outputs will form
a tiny hyperellipsoid. If e is the expansion of the BNN at
that point, then the volume of the hyperellipsoid will be e
times the volume of the ball. Suppose now that points are
chosen randomly and uniformly in the BNN's output
hypercube. If these points are sent through the inverse of
the BNN, then they will be crowded together e times more
densely. So the pdf of the new vectors will be e times the
(uniform) pdf of the random vectors. If the e function is
trained to be some pdf, then the new vectors will be
generated according to that pdf.

IV. THE PDF LEARNING ALGORITHM

The previous section showed that a PNN can learn a pdf if
sufficient training data is given. Unfortunately, the training
data must consist of x vectors and their associated pdf(x)
values. In most practical cases, however, we will simply
have a collection of pictures, or recordings, or data vectors
generated from some unknown pdf, so supervised learning
cannot be used. The pdf learning algorithm is shown in
figure 3. It is an algorithm that can train a neural network to
learn a new pdf, given only a set of i.i.d. vectors generated
from that pdf. It does not require that the pdf(x) be known
for each x in the training set. Furthermore, the pdf learning
algorithm can be implemented using ordinary backprop
code. For each training point, the pdf learning algorithm
will call the backprop learning algorithm twice, giving it
"desired outputs" chosen in a particular manner.

The operation of this algorithm is intuitive. Imagine
learning the function pdf(x) where x is scalar. The target
function is a curve. The training set is just a set of real
numbers. Every time a training point comes in, backprop is
told to make the curve higher by 1 unit for that point. But
on every other step it trains the curve to be lower
everywhere. The result is that the learned f(x) will tend to
be high in regions where the training points occur
frequently, and low in regions where they don't. So it will
learn to be a pdf.

Of course, this intuition only suggests that the learned curve
will be pdf-like, not that it will be the true pdf. There would
seem to be variations that are just as promising, such as

using a target of f(x)+2 instead of f(x)+1, or of training with
the uniformly-chosen data more often or less often than half
the time. However, it turns out that this particular algorithm
is required by the mathematics. The f(x)+1 must have the
+1, and the two types of updates must happen with exactly
equal frequencies. This causes it to do stochastic gradient
descent on the mean squared difference between the learned
function and the true pdf. If it is done on an ordinary neural
network, then the network learns the pdf. If it is done on a
PNN, then the network learns the pdf, and can also generate
new x vectors according to that pdf. The next section shows
the derivation of this algorithm.

There is one variant of the algorithm that could affect
learning speed. Instead of training on uniform just as often
as non-uniform, it could be trained with uniform data one
third as often, as long as the learning rate was three times
larger for the uniform as the non-uniform case. Or, more
generally, train 1/n as often with a learning rate n times
larger. This has the advantage of spending more of the time
training on the real data, but the unequal learning rates
could cause learning to be even slower. This variant has not
yet been explored.

V. DERIVATION OF THE PDF LEARNING ALGORITHM

To derive the pdf learning algorithm, it is useful to first look
at the derivation of ordinary error backpropagation. In
backprop with an infinite training set, the training points x
are chosen according to some distribution pdf(x). For each
point, the neural network calculates an output f(x), which is
compared to the known, desired output f*(x). The learning
algorithm then performs stochastic gradient descent on the
total error, which is usually defined as:

()� −= xxxx dpdfffE)()()(
2*

The pdf(x) term represents the fact that backprop will put
more emphasis on those training points that appear more
often in the training set. If the training set is chosen
uniformly, then that term will be a constant 1, and so will
disappear.

If the goal is to learn a pdf function, then f* will be that pdf
function. If we are equally interested in getting the function
correct at every point in space, then the pdf(x) term will go
to 1 and disappear. Therefore, the pdf learning algorithm
should be designed to minimize this total error function:

()� −= xxx dfpdfE 2)()(

Multiplying out the quadratic and separating the terms
yields:

���

�

+−=

+−=

xxxxxxx

xxxxx

dfdfpdfdpdf

dffpdfpdfE

22

22

)()()(2)(

)()()(2)(

Note that the first term is purely a function of the pdf, and is
not affected by the weights in the network. Therefore, we
could define a new error E' with that term deleted, and then
doing gradient descent on E' would be equivalent to doing
gradient descent on E. Assume f is a function that is always
nonnegative, then simple algebraic manipulations of E' then
causes the two remaining terms to look more familiar:

() ()��

��

−−−=

−=

xxxxx

xxxxx

dpdffdf

dfpdfdfE

)()(20)(0

)()(2)('

22

2

In this final form, each of the two integrals is in the same
form as the original backprop error function!

The first integral looks like backprop applied to the neural
network whose output is f(x), where x is chosen uniformly,
and where the "desired output" is always 0.

The second integral looks like backprop applied to a neural
network whose output is the square root of 2f(x), where x is
chosen according to the pdf that is to be learned, and where
the "desired output" is always 0. However, in this case
there is a minus sign in front of the integral. Gradient
descent on this term is equivalent to doing gradient ascent

with backprop. So backprop will be done with a negative
learning rate.

Both the square root and the negative learning rate look
odd, but they can be rewritten in a form that looks much
more familiar. In ordinary backprop, an update of a weight
w would look like this:

()
w

f
ffww

∂
∂−−←)(

)()(* xxxα

If the second term in the E' is implemented with backprop,
and if we define g to be g(x)=sqrt(2 f(x)), then the weight
update becomes:

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5

X

Y

Desired Output

n=1

n=2

n=3

n=4

n=5

n=6

n=7

n=8

n=9

n=10

Figure 4. Effect of additional layers on approximation
error for the BNN. The learned function (left) and
approximation error (right) for different numbers of
layers. The error is reduced quickly by the first few
layers, and is then almost zero. This is true for a simple
cubic function (top) and a more complex 7th order
polynomial (bottom).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-1.5 -1 -0.5 0 0.5 1 1.5

X

Y
n=1

n=2

n=3

n=4

n=5

n=6

n=7

n=8

n=9

n=10

Learned Function for Various Numbers of Layers

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Desired
Output
1

2

3

4

5

Squared Error in Learned Function

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

-1 -0.5 0 0.5 1

1

2

3

4

5

Figure 5. Learned functions (solid) and desired
functions (dotted) for both algorithms and all 3 neural
networks. The pdf learning algorithm trains a standard
neural network to learn a pdf from examples (top).
That algorithm also trains a PNN (second). Backprop
trains a BNN on a given cdf (third). And the PNN
then learns a pdf (bottom).

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

Learned PDF

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Backprop on BNN

0.2 0.4 0.6 0.8 1

1

2

3

4

PDF Learning on PNN

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

PDF Learning on MLP

()

()

()

()()
w

f
ffw

w
f

w

w
f

f
fw

w
g

gww

∂
∂+−−=

∂
∂−−=

∂
∂−−−=

∂
∂−−−←

)(
1)()(

)(
1

)(
2

)(22
1

0)(2

)(
0)()(

xxx

x

x
x

x

xx

α

α

α

α

This final line looks exactly like the ordinary backprop
update for the case where the network output is f(x), and the
desired output is f(x)+1.

Therefore, the pdf learning algorithm performs gradient
descent on E by doing two operations alternately. First, it
chooses a random x uniformly and propagates it through the
neural network, then calls backprop to train the output to be
0. Second, it obtains an x from the training set, which was
generated according to the target pdf. It then propagates it
through the network to get the output f(x), and calls
backprop with a desired output of f(x)+1. By repeating
these two steps, the algorithm forces backprop to actually
do gradient descent on E, and therefore to train the network
to learn the pdf of the training set.

VI. EMPIRICAL RESULTS

Figure 5 shows the results of testing various combinations
of the 5 algorithms and neural networks discussed in this
paper. In each figure, the learned function is a solid line,
and the target function is dotted. The top figure shows the
result of the pdf learning algorithm training a standard
neural network using just examples drawn from the
distribution (no supervised training). The second shows it
training a PNN. The third shows standard backprop training
a BNN on a given cdf. The fourth shows the resulting PNN
compared to the target pdf. It appears that the algorithms
and neural networks described here work with each other,
and can also be combined with standard neural networks or
algorithms. Figure 4 demonstrates how BNNs gain
representational power through more layers (depth) rather
than more nodes per layer (breadth).

VII. CONCLUSION

A new system for learning easily-invertible neural networks
has been presented. By combining the pdf learning
algorithm with the pdf neural network (which incorporates
the bijective neural network), it is possible to learn a highly
nonlinear function, then find inverses as efficiently as a
single evaluation of the network. Empirical evidence on
some simply cases suggests it may have promise, and it may
be worth pursuing further with some of the many
applications that could be tried.

REFERENCES

[1] C. A. Jensen, R. D. Reed, R. J. Marks II, M. A. El-Sharkawi, J.-B.

Jung, R. T. Miyamoto, G. M. Anderson, and C. J. Eggen, Inversion of
feedforward neural networks: Algorithms and applications, Proc.
IEEE, vol. 87, pp. 1536--1549, Sept. 1999.",

[2] "How to learn an inverse of a function?" comp.ai.neural-networks
FAQ. ftp://ftp.sas.com/pub/neural/FAQ7.html#A_inverse

[3] P. Martin and J. R. Millan, “Combining reinforcement learning and
differential inverse kinematics for collision-free motion of multilink
manipulators,” in Int. Work-Conf. Artificial and Natural Neural
Networks, (IWANN’97), Lanzarote, Spain, June 1997, pp. 1324–1333.

[4] D. A. Hoskins, J. N. Hwang, and J. Vagners, “Iterative inversion of
neural networks and its application to adaptive control,” IEEE Trans.
Neural Networks, vol. 3, pp. 292–301, Mar. 1992.

[5] A. P. Weijer, C. B. Lucasius, L. Buydens, and G. Kateman, “Using
genetic algorithms for an artificial neural network model inversion,”
Chemometrics Intell. Lab. Syst., vol. 20, no. 1, pp. 45–55, Aug. 1993.

[6] R. J. Williams. Inverting a connectionist network mapping by
backpropagation of error. In 8th Annual Conference of the Cognitive
Science Society, Hillsdale, NJ, 1986. Lawrence Erlbaum.

[7] A. Linden and J. Kindermann. Inversion of multilayer nets. In
Proceedings of the First International Joint Conference on Neural
Networks, Washington, DC, San Diego, 1989. IEEE.

[8] R. C. Eberhart and R. W. Dobbins, “Designing neural network
explanation facilities using genetic algorithms,” in Proc. Int. Joint
Conf. Neural Networks, vol. II, Singapore, 1991, pp. 1758–1763.

[9] R. D. Reed and R. J. Marks, II, “An evolutionary algorithm for
function inversion and boundary marking,” in Proc. IEEE Int. Conf.
Evolutionary Computation (ICEC’95), Perth, Western Australia,
1995, pp. 794–797.

[10] Cheeseman, P., Self, M., Kelly, J., Taylor, W., Freeman, D., Stutz, J.
. Bayesian classification\ In AAAI 88, The 7th National Conference
on Artificial Intelligence, 607--611. AAAI Press. 1988.

[11] Ghahramani, Z. Jordan, M. . Supervised learning from incomplete
data via an EM approach\ In Cowan, J., Tesauro, G., Alspector, J.,
Advances in Neural Information Processing Systems 6. Morgan
Kaufmann. 1994.

[12] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Handwritten digit recognition with a
back-propagation network. In David Touretzky, editor, Advances in
Neural Information Processing Systems 2 (NIPS*89), Denver, CO,
1990. Morgan Kaufman.

