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Abstract — We present two new types of neural networks (both 
of which can be trained with ordinary error backpropagation) 
and we present a new algorithm for learning a probability 
density function (pdf) from example vectors.  It is normally 
difficult to invert a neural network, but for the new bijective 
neural network, it is efficient to find an input producing any 
desired output, and such an input is guaranteed to exist and to 
be unique.  Furthermore, it can be used as one component in 
building a pdf neural network, which is a neural network with a 
nonnegative output, and for which it is guaranteed that the 
integral of the output is exactly 1.0 (as in a pdf function).  Both 
of these can be used for supervised learning using standard 
error backpropagation.  Finally, the new pdf learning 
algorithm is capable of using those networks to learn a pdf 
given i.i.d. samples drawn from that pdf, and to then generate 
new vectors from the learned pdf.  This, in turn, allows 
inversion of a function with non-unique inverses, where each 
inverse is generated with just a single evaluation of the 
network. 
 

I. BACKGROUND 
 
This paper presents a single system, whose components 
address two unrelated problems that have been widely 
studied: inverting neural networks, and learning pdfs.   
 
It is a well-studied problem to find an input for a given 
neural network so that it will give a desired output.  For 
example, to find x such that f(x) has a given value, where f 
is a given neural network that has already been trained.  
There is an extensive literature on this problem (see [1] and 
[2] for surveys of the field).  There are many applications 
where this would be useful, such as inverse kinematics for 
robotics [3], or model reference control [4], or optimizing a 
design where the utility function has been learned by a 
neural network [5].  Unfortunately, for a typical Multilayer 
Perceptron (MLP) neural network, this is a difficult 
problems.  Algorithms have been proposed for this problem 
that perform gradient descent on the input vector [6] [7], or 
use genetic algorithms [8] [9], or use a number of other 
approaches.  All of these techniques have three problems: 
finding a single inverse requires many evaluations of the 
network, the result is only an approximation of the correct 
answer, and it may not return an answer at all, even if one 

exists.  One obvious solution would be to have the network 
learn the inverse of the function in the first place, taking f(x) 
as an input, and giving x as an output.  However, if different 
x vectors have the same f(x) value, then an inverse network 
would end up learning the average of the two rather than 
learning one or the other.   
 
This can be addressed by both learning and emulating a pdf.  
If y=f(x), and the network will be trained with (x,y) pairs, 
then the network might be trained to learn the probability 
distribution pdf(x|y).  Merely learning the distribution is 
insufficient, though.  It should be able to efficiently 
generate new x vectors according to that distribution given a 
y vector.  In that case, each x it generates is an inverse value 
for y, and so the network would be efficiently inverting a 
non-invertible function.  Unfortunately, it is not clear how 
to both learn the pdf and generate the vectors.  If something 
like a common mixture of Gaussians model is used [10] 
[11], then it will be difficult to capture complex 
nonlinearities in a high dimensional space.  On the other 
hand, if a neural network is used to learn the conditional 
probabilities, it is not obvious how to efficiently generate a 
new x vector given y.  Such a solution would have further 
applications beyond just inverting neural networks, such as 
in recognizing anomalies during data mining.  Or a 
reinforcement learning system might first use real-world 
data to learn a stochastic model of the MDP to be controlled 
(which is a pdf of next state given current state and action), 
and then perform reinforcement learning on that model.  
The next two sections develop such a system: the pdf neural 
network, whose largest component is the bijective neural 
network.. 
 

II. BIJECTIVE NEURAL NETWORK 
 
The bijective neural network (BNN) is shown in figure 1.  It 
is a multilayer neural network whose input is n real numbers 
in the open interval (0,1), and whose output is also n 
numbers in (0,1).  It is similar to a standard multilayer 
perceptron in that it consists of multiple layers of nodes, 
each of which takes a weighted sum of its inputs, adds a 
bias, then applies a nonlinear function to it.  The BNN 
differs from the standard neural network in three ways.  



First, a BNN uses a different nonlinear function in the 
nodes.  Instead of using the traditional nonlinear function: 

f(x)=tanh(x) 
it uses this new one: 

f(x)=arcsinh (c+sinh (x)) 
where c is an additional weight to be learned.  Second, the 
BNN requires processing on its inputs and outputs.  The 
function y=1/2 tanh(x)+1/2 is applied to every output to 
squash it down to the interval (0,1), and its inverse is 
applied to every input.  Third, a BNN with n inputs will 
always have n outputs and n nodes in each layer.  This 
implies that large networks will be deep, with many layers, 
rather than broad and shallow as is usually the case in 
traditional neural networks.   
 
Note that the nonlinear function is not numerically stable as 
written.  The inner sinh can generate very large numbers 
before they are reduced to reasonable size by the arcsinh.  
However, if the hyperbolic functions are written as 
exponentials, terms cancel and can be factored to ensure 
good stability.  The function f(x,c) can be calculated safely 
in C as: 

if(x>0) { 
 t=0.5+c*exp(-x)-exp(-2 * x)/2; 
 return x+log(t+sqrt(exp(-2 * x)+t * t)); 
} else { 
 t=-0.5+c * exp(x)+exp(2 * x)/2; 
 return x-log(-t + sqrt(exp(2 * x) + t * t)); 
} 
 

The weights between any two layers in the BNN can be 
thought of as an n by n matrix.  As long as all the weight 
matrices are nonsingular, the BNN is guaranteed to be a 
bijection from the input hypercube to the output hypercube.  
This is obvious from the construction of each layer.  The 
inputs are all passed through the inverse hyperbolic tangent.  
That function is a bijection from its input (which is between 

0 and 1, exclusive) and its output (which is between –� and 
�).  So it is a bijection from the unit hypercube to the entire 
n-dimensional Euclidean space.  The first layer of weights 
and biases then performs an affine transformation, which is 
a bijection from the n-space to itself.  The nonlinearities in 
the first layer also perform a bijection from the n-space to 
itself.  This continues for each layer of the network, until 
the outputs are passed through the hyperbolic tangent 
functions, which perform the final bijection from the n-
space to the unit hypercube.  Therefore, the neural network 
as a whole is guaranteed to be a bijection from the unit 
hypercube to itself.  
 
This property only holds when the matrices are nonsingular.  
However, if the initial weights are chosen randomly from 
small ranges, then with probability 1, the matrices will all 
be nonsingular.  Similarly, after any number of steps of 
backpropagation with momentum, they will still be 
nonsingular with probability 1.   
 
Given any set of (nonsingular) weights, the network will 
implement a nonlinear function that is easy to invert.  In 
fact, the inverse function will be a network identical to the 
original, but with different weights.  It can be found by first 
swapping the order of the weights.  In other words, the 
weights in the first layer move to the last, the weights in the 
second layer move to the second-to-last, and so on.  Then, 
each layer must be transformed to implement the inverse 
function.  The weights in a layer can be viewed as a matrix 
W of weights on the connections, and a vector b of all the 
biases: 

y = W x + b 
The inverse of that transform is simply: 

x = W-1 y + (-W-1 b) 
So the connection weights can be replaced with W-1, and 
the biases can be replaced with  (-W-1 b).  Finally, each of 
the nonlinear functions must be replaced by its inverse.  It is 
clear that the inverse of the function: 

 
y = arcsinh (c+sinh (x)) 

 
is the function: 

x = arcsinh (-c+sinh (y)) 
which means that the nonlinear function can be inverted by 
simply negating the weight c. 
 
It is interesting that the network is so easy to invert.  Given 
a set of weights, the cost to invert the network is essentially 
just the cost of doing an n by n matrix inversion for each 
layer.  Once this work is done, the inverse network can be 
evaluated many times, with each evaluation being done just 
as efficiently as evaluation of the original network would 
have been.  If the network is very deep, then the original 
function can be extremely nonlinear and complicated, yet its 
inverse will always be very efficient to calculate.   
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Figure 1.  Bijective Neural Network (BNN), with 
inputs x, outputs y, internal signals s, and 
weights/biases w, b, and c.  The number of nodes per 
layer must equal the number of inputs and outputs. 
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Because the network is made entirely of continuous 
functions, it can be trained using ordinary backprop with 
momentum.  The only difference between backprop on a 
traditional network and backprop on a BNN is that the 
nonlinear functions in the nodes are different, so their 
derivatives will be different.  Therefore the BNN can be 
implemented by making only a few small changes to 
existing neural network code.  Because of the similarities, 
the BNN can take advantage of most of the techniques used 
with traditional networks, such as constraining some 
weights to remain equal, as in a convolutional network [12]. 
 

III. PDF NEURAL NETWORK 
 
The pdf neural network (PNN) is shown in figure 2.  It is a 
network with n inputs and 1 output.  The inputs are each in 
the interval (0,1), and the output will always be 
nonnegative.  In addition, when the output is integrated over 
all of input space, the integral is always exactly 1 
(assuming, as before, the weight matrices are nonsingular).  
There may be a number of uses for a network that always 
has an integral of 1, but the most obvious use is for learning 
pdf functions.  A pdf is nonnegative everywhere, and 
integrates to 1. 
 
The PNN is formed from a BNN by adding one additional 
calculation.  The input to the PNN is passed to the BNN, 
which calculates some output (which is ignored).  The PNN 
then calculates the Jacobian across the BNN.  The Jacobian 
is an n by n matrix formed from the partial derivatives of 
each output of the BNN with respect to each input.  The 
PNN then outputs the absolute value of the determinant of 
that matrix.   
 
Call the absolute value of the determinant of the Jacobian of 
a function its expansion. The output of the PNN is simply 
the expansion of the BNN.  This is easily calculated as the 
product of the expansion of each layer of the BNN.  The 
expansion of a linear transform is the determinant of the 

weight matrix.  The expansion of a layer of nonlinearities is 
the product of the derivative across each nonlinearity in that 
layer.  These facts make the expansion of a network easy to 
calculate, and so the PNN is easily built from a BNN. 
 
The PNN can be used to represent a continuous pdf, 
because its output is always nonnegative and integrates to 1.  

Because all its functions are continuous, it can be trained 
with ordinary backprop with momentum.  All that is 
necessary is a training set of input vectors x, and desired 
output values pdf(x).  Once the network has learned the pdf 
function, it can be given some new x vector, and it can 
calculate the value pdf(x).  If the pdf(x) is low, then x is a 
surprising, anomalous, unusual vector.  Detecting this can 
be useful in areas such as data mining. 
 
However, the trained network can also serve an additional 
purpose.  A random number generator can generate random 
vectors uniformly in the unit hypercube.  If these vectors are 
passed through the inverse of the BNN inside the PNN, then 
the resulting vectors will be distributed according to that 
pdf.  This is a remarkable result.  A traditional neural 
network can learn a pdf through supervised learning, but 
then all it can do is evaluate pdf(x) for a given x vector.  It 
cannot generate new x vectors according to that pdf.  A 
traditional network might be trained to give the probability 
that a given piece of music belongs to a given musical style, 
but that does not automatically give it the ability to compose 
new music of that style.  A PNN can compose new vectors 
with whatever pattern was present in the training vectors.  
Composing a new vector is just as efficient as evaluating the 
pdf(x) for a single x vector. 
 
Note that it is easy to modify the network for conditional 
distributions pdf(x|y) rather than just pdf(x).   A second 
neural network can be constructed that is purely a function 
of y, and which is made up of any types of neurons (e.g. 
sigmoidal or radial basis functions) combined in any 

Figure 2.  Pdf Neural Network (PNN), with n 
inputs x, one output z, and the same weights as 
the BNN inside it.  The output of the BNN is 
discarded.  The output of the PNN is the 
expansion of the BNN. 

BNN x y 

PNN 

z 
z = |determinant(Jacobian(BNN))| 

Figure 3.  The Pdf Learning Algorithm.  Both calls to 
backprop adjust the same weights, and use the same 
learning rate and momentum.  This can work with any 
neural network, but if a PNN is used to learn the pdf, it 
can then generate new vectors according to that pdf. 

Pdf learning algorithm 
 
   - Loop 

- Generate x randomly with uniform probability 
- Propagate x through the network to get the output z 
- Call backprop to train the network, with a "desired 

output" of 0 
- Set x to a new vector generated by the target pdf to 

be learned 
- Propagate x through the network to get the output z 
- Call backprop to train the network, with a "desired 

output" of z+1 



number of layers.  The output of some of these neurons can 
then feed in to the sums in the pdf network.  During 
training, the x part of a data point is presented to the pdf 
network, the y part is presented to the other network, and 
then they feed forward and are trained as if they are one 
network.  Once trained, the combined network can be given 
a y vector, and can generate new x vectors according to the 
learned distribution pdf(x|y). 
  
It will now be shown that the PNN actually does have the 
properties claimed above.  Suppose that a tiny ball is chosen 
within the input hypercube.  If each of the vectors in the ball 
is passed as input to the BNN, then all the outputs will form 
a tiny hyperellipsoid.  If e is the expansion of the BNN at 
that point, then the volume of the hyperellipsoid will be e 
times the volume of the ball.  Suppose now that points are 
chosen randomly and uniformly in the BNN's output 
hypercube.  If these points are sent through the inverse of 
the BNN, then they will be crowded together e times more 
densely.  So the pdf of the new vectors will be e times the 
(uniform) pdf of the random vectors.  If the e function is 
trained to be some pdf, then the new vectors will be 
generated according to that pdf. 
 

IV. THE PDF LEARNING ALGORITHM 
 
The previous section showed that a PNN can learn a pdf if 
sufficient training data is given.  Unfortunately, the training 
data must consist of x vectors and their associated pdf(x) 
values.  In most practical cases, however, we will simply 
have a collection of pictures, or recordings, or data vectors 
generated from some unknown pdf, so supervised learning 
cannot be used.  The pdf learning algorithm is shown in 
figure 3.  It is an algorithm that can train a neural network to 
learn a new pdf, given only a set of i.i.d. vectors generated 
from that pdf.  It does not require that the pdf(x) be known 
for each x in the training set.  Furthermore, the pdf learning 
algorithm can be implemented using ordinary backprop 
code.  For each training point, the pdf learning algorithm 
will call the backprop learning algorithm twice, giving it 
"desired outputs" chosen in a particular manner. 
 
The operation of this algorithm is intuitive.  Imagine 
learning the function pdf(x) where x is scalar.  The target 
function is a curve.  The training set is just a set of real 
numbers.  Every time a training point comes in, backprop is 
told to make the curve higher by 1 unit for that point.  But 
on every other step it trains the curve to be lower 
everywhere.  The result is that the learned f(x) will tend to 
be high in regions where the training points occur 
frequently, and low in regions where they don't.  So it will 
learn to be a pdf.   
 
Of course, this intuition only suggests that the learned curve 
will be pdf-like, not that it will be the true pdf.  There would 
seem to be variations that are just as promising, such as 

using a target of f(x)+2 instead of f(x)+1, or of training with 
the uniformly-chosen data more often or less often than half 
the time.  However, it turns out that this particular algorithm 
is required by the mathematics.  The f(x)+1 must have the 
+1, and the two types of updates must happen with exactly 
equal frequencies.  This causes it to do stochastic gradient 
descent on the mean squared difference between the learned 
function and the true pdf.  If it is done on an ordinary neural 
network, then the network learns the pdf.  If it is done on a 
PNN, then the network learns the pdf, and can also generate 
new x vectors according to that pdf.  The next section shows 
the derivation of this algorithm. 
 
There is one variant of the algorithm that could affect 
learning speed.  Instead of training on uniform just as often 
as non-uniform, it could be trained with uniform data one 
third as often, as long as the learning rate was three times 
larger for the uniform as the non-uniform case.  Or, more 
generally, train 1/n as often with a learning rate n times 
larger.  This has the advantage of spending more of the time 
training on the real data, but the unequal learning rates 
could cause learning to be even slower.  This variant has not 
yet been explored. 
 

V. DERIVATION OF THE PDF LEARNING ALGORITHM 
 
To derive the pdf learning algorithm, it is useful to first look 
at the derivation of ordinary error backpropagation.  In 
backprop with an infinite training set, the training points x 
are chosen according to some distribution pdf(x).  For each 
point, the neural network calculates an output f(x), which is 
compared to the known, desired output f*(x).  The learning 
algorithm then performs stochastic gradient descent on the 
total error, which is usually defined as: 

( )� −= xxxx dpdfffE )()()(
2*  

The pdf(x) term represents the fact that backprop will put 
more emphasis on those training points that appear more 
often in the training set.  If the training set is chosen 
uniformly, then that term will be a constant 1, and so will 
disappear. 
 
If the goal is to learn a pdf function, then f* will be that pdf 
function.  If we are equally interested in getting the function 
correct at every point in space, then the pdf(x) term will go 
to 1 and disappear.  Therefore, the pdf learning algorithm 
should be designed to minimize this total error function: 

( )� −= xxx dfpdfE 2)()(  

Multiplying out the quadratic and separating the terms 
yields: 
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Note that the first term is purely a function of the pdf, and is 
not affected by the weights in the network.  Therefore, we 
could define a new error E' with that term deleted, and then 
doing gradient descent on E' would be equivalent to doing 
gradient descent on E.  Assume f is a function that is always 
nonnegative, then simple algebraic manipulations of E' then 
causes the two remaining terms to look more familiar: 
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In this final form, each of the two integrals is in the same 
form as the original backprop error function!   
 
The first integral looks like backprop applied to the neural 
network whose output is f(x), where x is chosen uniformly, 
and where the "desired output" is always 0.   
 
The second integral looks like backprop applied to a neural 
network whose output is the square root of 2f(x), where x is 
chosen according to the pdf that is to be learned, and where 
the "desired output" is always 0.  However, in this case 
there is a minus sign in front of the integral.  Gradient 
descent on this term is equivalent to doing gradient ascent 

with backprop.  So backprop will be done with a negative 
learning rate.   
 
Both the square root and the negative learning rate look 
odd, but they can be rewritten in a form that looks much 
more familiar.  In ordinary backprop, an update of a weight 
w would look like this: 

( )
w

f
ffww

∂
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If the second term in the E' is implemented with backprop, 
and if we define g to be g(x)=sqrt(2 f(x)), then the weight 
update becomes: 
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This final line looks exactly like the ordinary backprop 
update for the case where the network output is f(x), and the 
desired output is f(x)+1.     
 
Therefore, the pdf learning algorithm performs gradient 
descent on E by doing two operations alternately.  First, it 
chooses a random x uniformly and propagates it through the 
neural network, then calls backprop to train the output to be 
0.  Second, it obtains an x from the training set, which was 
generated according to the target pdf.  It then propagates it 
through the network to get the output f(x), and calls 
backprop with a desired output of f(x)+1.  By repeating 
these two steps, the algorithm forces backprop to actually 
do gradient descent on E, and therefore to train the network 
to learn the pdf of the training set. 
 

VI. EMPIRICAL RESULTS 
 
Figure 5 shows the results of testing various combinations 
of the 5 algorithms and neural networks discussed in this 
paper.  In each figure, the learned function is a solid line, 
and the target function is dotted.  The top figure shows the 
result of the pdf learning algorithm training a standard 
neural network using just examples drawn from the 
distribution (no supervised training).  The second shows it 
training a PNN.  The third shows standard backprop training 
a BNN on a given cdf.  The fourth shows the resulting PNN 
compared to the target pdf.  It appears that the algorithms 
and neural networks described here work with each other, 
and can also be combined with standard neural networks or 
algorithms.   Figure 4 demonstrates how BNNs gain 
representational power through more layers (depth) rather 
than more nodes per layer (breadth). 
 

VII. CONCLUSION 
 
A new system for learning easily-invertible neural networks 
has been presented.  By combining the pdf learning 
algorithm with the pdf neural network (which incorporates 
the bijective neural network), it is possible to learn a highly 
nonlinear function, then find inverses as efficiently as a 
single evaluation of the network.  Empirical evidence on 
some simply cases suggests it may have promise, and it may 
be worth pursuing further with some of the many 
applications that could be tried. 
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