
A New Approach for Boolean Query Processing in Text Information Retrieval

Leemon Baird and Donald H. Kraft

Department of Computer Science

U.S. Air Force Academy

USAFA, CO 80840

USA

leemon.baird@usafa.af.mil donald.kraft@usafa.af.mil

Special Session 3SS: The Application of Fuzzy Logic

and Soft Computing in Flexible Querying

IFSA 2007 World Congress

Cancun, Mexico

June 2007

Abstract

The main objective of an information retrieval system is to be effective in providing a

user with relevant information in response to a query. However, especially given the

information explosion which has created an enormous volume of information, efficiency

issues cannot be ignored. Thus, to be able to quickly process lists of documents that have

the keywords stated in a given query assigned/indexed to them by merging via the

Boolean logic of the query is essential in a Boolean query system. A new algorithm,

based loosely on concurrent codes, is developed and discussed.

Introduction
There is a need for good information retrieval, especially in this, the information age.

Such systems need to be effective in providing relevant information without burdening

the user with too much data. Thus, performance measures such as recall and precision

help one determine how effective an information retrieval system is.

Information retrieval systems also need to be efficient, especially in terms of time.

Efficiency considerations are vital in the information explosion era where huge volumes

of information make it imperative to find the right information in a timely manner.

Boolean query mechanisms are quite common, even today, in modern retrieval systems.

Search engines such as Google and digital libraries such as the one at Stanford University

[Stanford2006] provide such mechanisms. Users tend to use simple queries, but some

users can and do incorporate Boolean logic connectives (e.g., and, or, and not) into their

queries [Spink2001]. Thus, it behooves us to find the most efficient mechanism possible

to search large collections of text documents to find those documents that satisfy Boolean

queries.

In addition, some text retrieval systems have incorporated weights to indicate the

importance of terms in describing document contents (indexing) and in terms of

describing queries [Meadow2000]. These weights have been interpreted as coordinates

for documents and queries in a vector space and as probabilities, but can also be

interpreted as fuzzy set membership functions. This, too, will have an impact on

efficiency, so that an efficient mechanism to process weighted Boolean queries is needed.

In addition, data mining is a field of increasing importance lately, including

security issues such as identifying terrorists and keeping information secure. Such data

This work was sponsored in part by the Air Force Information Operations Center (AFIOC), Lackland AFB, TX, and was
performed at the Academy Center for Information Security (ACIS) at the United States Air Force Academy.

mining often involves complex searches of extremely large databases that combine both

structured data (e.g., relational databases) and unstructured data (e.g., text documents and

emails). In unstructured document retrieval, the problem is often to find documents that

contain certain keyword combinations, as described by a complex Boolean expression.

In the structured case, the problem is generally to find records that contain certain

attributes, as described by a complex Boolean expression. In both cases, the need for

efficiency, in terms of both time and space (i.e., computer memory) is obvious.

Background
There has been but a little work of late in trying to improve the efficiency of query

processing of Boolean queries using AND, OR, and NOT operators on indexed textual

information retrieval systems. Consider the problem of retrieving documents in response

to a query q = t1 AND t2, where t1 and t2 are given terms (e.g., t1 = “NLP” and t2 =

“IR”) that is posed to a collection of N documents. Suppose that an index has been set up

as an inverted file [Meadow2000]. Suppose further that t1 has n1 documents with the

tem t1 associated with them, while t2 has n2 documents with the term t2 associated with

them, i.e., the lengths of the lists for terms t1 and t2 are n1 and n2, respectively.

Suppose also that n3 the number of documents that have both terms t1 and t2 associated

with them.

Zobel notes that to process query q, if the index is totally resident on the disk, a

reasonable assumption, that one must fetch both lists which has O(n1+n2) time, while a

straightforward merge would then cost an additional O(min(n1,n2)) [Zobel2006] . Zobel

also notes that one could get O(√n1+√n2) if one has random access to the lists and if the

sum of the square roots of the list lengths is greater than n3 by employing skiplists.

Baeza-Yates [Baeza-Yates2004] offers a fast set intersection algorithm that

assumes that the two lists of documents for each term are sorted. His algorithm involves

a hybrid of binary search, as his original problem involves matching a query that is a

multiset of terms against a document collection that is a larger multiset of terms. He

arrives at a good average case by not inspecting all elements. Still, he is dealing with

O(min(n1,n2) log (max(n1,n2))).

Work has been done on using comparison-based insertion and interpolation search

for intersecting large, ordered sets [Barbay2006, Demaine2003, Demaine2001,

Demaine2000]. More specifically, the authors look at Boolean query operators (union

and difference, as well as intersection) for large sets of text records, using adaptive

algorithms based on binary search.

The bottom line is that most results lead to algorithms with algorithmic

complexity O(min(n1,n2)), while some hierarchical methods can yield O(√n1+√n2), but

with high overhead. We desire an algorithm that is linear, say O(n3).

The Algorithm

We employ a novel data structure and algorithm for speeding Boolean searches,

optimizing for the case where the number of documents satisfying the query is small

compared to the number of documents containing terms used in the query. The algorithm

works for arbitrary Boolean queries, including arbitrarily-nested parentheses. The data

structures are based on BBC codes, a recent development in concurrent code theory, a

new branch of coding theory that has been developed recently for a very different

application (wireless jam-resistant communication) [Baird2007].

Assume every document is assigned a random, n-bit binary number as its

identifier. For each possible search term, there will be a list of documents IDs containing

that term. These are stored in a BBC structure, which is something like a Bloom filter.

However, in a Bloom filter it is difficult to read out all the items stored in it. In a BBC

structure, it is easy to do so. This difference allows the structure to optimize queries

where the final set of satisfying documents is very small compared to the number of

documents containing each term.

There is a separate BBC structure for each search term. The structure is a 1D

array of bits. Initially, all bits are set to zero. Then each document ID is added to the

structure. An ID is added to the structure by setting a bit to 1 in a location determined by

the hash of each prefix of the document ID. For example, if the document ID is 11010

then the prefixes are {1, 11, 110, 1101, 11010). Hashing them gives the set {H(1), H(11),

H(1110), H(1101), H(11010)}. Any hash function can be used, as long as it returns

values in the range of 0…2
m
-1, where m is the number of bits in the BBC structure. A

simple approach is to use the first m bits of a SHA-1 hash or MD5 hash. In this example,

5 bits in the vector are set to 1, those in positions H(1) through H(11010). Contrast this

with a Bloom filter, where only the bit in position H(11010) would be set. Figure 1

shows the structure that would be built for term A, assuming there are only two

documents containing A, and their IDs are 11010 and 01100. The location of each 1 bit

is chosen by a hash function. The locations corresponding to 11010 are written above the

rectangle, and those for 10100 are written below it.

Figure 1. A BBC structure for a given term, encoding the document IDs of

all documents containing that term (in this example, 11010 and 10100).

Once all the document IDs have been inserted into the BBC structures for all the

search terms, it is possible to perform queries efficiently. For example, consider the

query “(A OR B) AND NOT C”. We will first determine whether any of the document

IDs satisfying this query begin with a 0. This is done by performing an OR of the bit in

position H(0) in the BBC structures that were built for terms A and B. The result is then

ANDed with the NOT of the bit in position H(0) in the BBC structure for term C. If the

result of this calculation is a 1, then we conclude that there is at least one satisfying

document whose ID starts with 0. A similar check can be done for H(1). After

performing these two checks, the working set of possible prefixes of document IDs

0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0

H(1101) H(11) H(11010) H(110) H(1)

H(1) H(101) H(1010) H(10) H(10100)

satisfying the query is either {}, or {0}, or {1}, or {0,1}. The process can then be

repeated to find the second bit of each satisfying document ID. If the first step yielded a

set with 0 in it, then the second step will check positions H(00) and H(01). If the first

step yielded a set with 1 in it, then the second step will check positions H(10) and H(11).

This can continue until all the bits of all the document IDs have been found. In other

words, a search is performed on a tree such as that in figure 2.

Figure 2. A BBC decoding search that yields all documents that satisfy the query (in this

case, documents 0110, 0100, and 1011).Upward branches add a 0, and downward add 1.

Branches are pruned when the hash of a prefix doesn’t satisfy the query.

The leaves that occur in the far right layer are the IDs of exactly those documents

that satisfy the query. Initially, the set of potential prefixes is empty {}. After one

iteration, searching the second layer from the left, the set is {0, 1}, because the bits at

position H(0) for each term satisfied the Boolean expression of the query, and so did the

bits at position H(1). At the next iteration, for layer 3, the set is only {01, 10} because

the bits at positions H(01) and H(10) for each term satisfied the query, but the bits at

H(00) and H(11) did not. In the third layer, the set grows to three elements, because the

prefix 01 could be expanded to both 010 and 011, but the prefix 10 could only be

expanded to 101. It couldn’t be expanded to 100 because the bits in position H(100) for

each term didn’t satisfy the Boolean expression of the query.

If the final solution has very few satisfying documents, then the set of possibilities

will shrink very quickly, and very little time will be expended on the entire search. Note

that the search pruning has an interesting holographic property. In a traditional search for

a query such as A AND B AND C AND D AND E, the search might proceed from left to

right, processing each term in order to successively shrink the set of possible documents

to return. In the approach using the BBC structure, the search reveals progressively more

bits of the document ID. But at every step, all of the variables in the entire query are

taken into account. This means that if the final answer is going to be a small set, then

there will be substantial pruning at every stage, not just at the end. The entire Boolean

expression will help prune at every step.

An example of how this would work is an optimization of the query (Attack OR

Bomb) AND Car. A BBC packet (signature) could be created that contains the document

IDs of every document containing the word “Attack”. A similar packet would be created

for Bomb, and one for Car. These packets can then be combined bitwise. So the Attack

0

1

01

1011

10

0110

011

101

0100

010

and Bomb packets would be combined with a bitwise OR, then the result would be

combined with the Car packet with a bitwise AND. The resulting packet encodes all of

the documents that satisfy the query. Previous methods would allow such a packet to be

constructed and queried for whether it contains a given document. But now with BBC

coding, we can also extract all of the documents contained in the final packet. In other

words, this is an extension of traditional signatures, which actually allows all of the

documents satisfying the query to be found efficiently. In addition, by using a depth-first

search of the BBC decoding tree, it is very efficient to extract just a single document (or

just n documents) from the set of satisfying documents, with an amount of computation

that is independent of the number of documents in the set.

Extending the Algorithm to Fuzzy Retrieval

In classical information retrieval models involving Boolean queries, one assumes that text

records have been indexed with terms such that term tj has or has not been assigned to

document di. Thus, the “weight” of tj on document di is either 1 (has been assigned) or 0

(has not been assigned). One can easily imagine an extension where these weights, rather

than being in {0,1} can take on values in the interval [0,1]. One interpretation of these

extended weights is to see them as fuzzy set membership functions, i.e., di is in the subset

of documents “about” the concept(s) represented by tj with a membership value if wij, the

weight of tj on di. These weights might be generated according to any of many forms of

relevance feedback [Kraft1999].

 The BBC-based approach can be adapted for fuzzy queries as well. If each

(document, term) pair has a fuzzy weight, then some system can be chosen for combining

fuzzy values to obtain an overall degree that any given document satisfies the given

query. For example, using traditional fuzzy operators, the weights for each term can be

combined with a maximum, minimum, or 1-x operator (for OR, AND, and NOT,

respectively). The goal then is to find the best document (or top n documents) according

to this function.

There are several ways to modify the algorithm to work in this case. The simplest

method is a two-stage process. First treat every variable as crisp, noting only whether a

document contains a term, not how many times it occurs. Use the algorithm from the

previous section to find the set of documents that satisfy the crisp query. The fuzzy value

for each document in the set can then be calculated, and the best document (or best n

documents) can be returned. In the case where the solution set is small, this calculation

will be very fast.

If the result of the crisp query is a large set, then this simple approach may be

unacceptably slow. In that case, there is a more sophisticated algorithm that can be much

more efficient. It will only generate one document (or n documents) rather than

generating the entire set resulting from the crisp query.

For this fuzzy search algorithm, it is necessary to store an additional data

structure. For each term T and each possible prefix P of a document ID, it will store the

Cmin(T,P) and Cmax(T,P), which are the minimum and maximum weight for that term in

all documents whose IDs start with that prefix. So, Cmax(X, 011) for term X and the

prefix 011 will store the count of how many times X appears in whichever document

contains the most occurrences of X, from among all documents whose IDs start with the

string 011. Similarly, Cmin(X, 011) will store the minimum.

Given the Cmax and Cmin tables, it is possible to optimize the search process

through the BBC decoding tree, by performing a uniform-cost, best-first search

[Russell1995]. At any given point in the search, there will be a set of prefixes of IDs that

might satisfy the query. The one with the most promising fuzzy value should be

expanded next. For example, if the query is “(A OR B) AND NOT C”, and a given

prefix is 011, then the maximum value that any document could have starting with 011

would be min(max(Cmax(A,011), Cmax(B,011)), 1- Cmin(C,011)). This was found by

replacing OR with max, AND with min, and NOT with a subtraction from 1. The Cmax

structure was used for both the non-NOTed variables, and the Cmin for the NOTed

variable. This can be calculated for each prefix in the set, and the prefix with the highest

value should be expanded next. For the crisp algorithm in the previous section, at any

given time the working set always contains prefix strings of the same length. With this

new approach, the working set will contain prefix strings of varying lengths, but which

all have roughly the same maximum possible fuzzy weight.

Using this approach, the first time an entire ID is decoded, it’s guaranteed to have

the highest upper bound of all the IDs considered. As a heuristic, this document could

simply be returned, and the search could end. But if it is desired to find the document

with the highest possible fuzzy value, then additional work should be performed. First,

the true fuzzy value for this document should be calculated. Then, any prefix in the

working set that has an upper bound lower than this document should be deleted. Finally,

the search should continue using all the remaining prefixes (if any). During the

remainder of the search, a prefix can always be pruned if its maximum value is less than

the best value already achieved. When no prefixes remain, the best answer discovered so

far is guaranteed to be the best document possible for that query.

Future Work - Testing

In information retrieval research, one must go beyond algorithmic complexity and

purely theoretical analysis by testing new algorithms against standard data. Such

standard data must include textual documents, queries, and answer sets. The National

Institute of Standards and Technology (NIST) has available such standard test data,

known as the TREC or Tipster data collection, which would be employed to verify the

improvements possible in the new algorithm. TREC collections vary in data type, query

types, and data volumes. For example, some sample data sets include genomic, legal,

and government oriented collections. Regardless of the data sets, they all provide

document relevance judgments for each query listed. To demonstrate scalability, we plan

in the future to employ the “Terabyte” collection. Although not actually a terabyte in

terms of size (only 436 GB), efficiently and accurately processing this collection should

demonstrate the potential of our approach.

References

[Baird2007] Baird, L. C., Bahn, W. L., and Collins, M. D., “Jam-resistant

communication without shared secrets through the use of concurrent codes,” U.S. Air

Force Academy Technical Report USAFA-TR-2007-01, 14 Feb 2007.

[Baeza-Yates2004] Baeza-Yates, R., “A fast set intersection algorithm for sorted

sequences,” CPM 2004, Istanbul, Turkey, Springer Lecture Notes in Computer Science

[Baeza-Yates1999] Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information Retrieval,

England: ACM Press/Addison-Wesley

[Barbay2006] Barbay, J., Lopez-Ortiz, A., and Lu, T., “Faster adaptive set intersections

for text searching,” WEA 2006

[Demaine2003] Demaine, E.D. and Lopez-Ortiz, A. “A Lower Bound on Index Size for

Text Retrieval,” Journal of Algorithms, 48(1) pp. 2-15

[Demaine2001] Demaine, E.D., Lopez-Ortiz, A., and Munro, J.I., “Experiments on

Adaptive Set Intersections for Text Retrieval Systems, Proceedings of the 3rd Workshop

on Algorithm Engineering and Experiments (ALENEX), Lecture Notes in Computer

Science, Washington, DC, 2001.

[Demaine2000] Demaine, E.D. and Lopez-Ortiz, A. “Adaptive Set Intersections, Unions,

and Differences,” Proceedings of the ACM-SIAM Symposium on Discrete Algorithms

(SODA)

[Kraft1992] Kraft, D.H. and Buell, D.A., "Fuzzy Sets and Generalized Boolean Retrieval

Systems," In Dubois, D., Prade, H, and Yager, R. (eds.), Readings in Fuzzy Sets for

Intelligent Systems, San Mateo, CA: Morgan Kaufmann Publishers

[Kraft1999] Kraft, D.H., Bordogna, G., and Pasi, G., "Fuzzy Set Techniques in

Information Retrieval," in Bezdek, J.C., Didier, D. and Prade, H. (eds.), Fuzzy Sets in

Approximate Reasoning and Information Systems, vol. 3, The Handbook of Fuzzy Sets

Series, Norwell, MA: Kluwer Academic Publishers, 1999

[Meadow2000] Meadow, C.T., Boyce, B.R., and Kraft, D.H., Text Information Retrieval

Systems, second edition, San Diego, CA: Academic Press

[Grossman2004] Grossman, D. and Frieder, O., Information Retrieval: Algorithms and

Heuristics, Second Edition, Springer Publishers

[Russell1995] Russell, S., Norvig, P., Artificial Intelligence: A Modern Approach,

Prentice Hall, 1995.

[Sanchez2002] Sanchez, S.N., Triantaphyllou, E., and Kraft, D.H., "A Feature mining

Based Approach for the Classification of Text Documents into Disjoint Classes,"

Information Processing and Management, 38(4), pp. 583-604

[Spink2001] Spink, A., Wolfram, D., Jansen, B.J., and Saracevic, T., "Searching the

Web: The Public and Their Queries," Journal of the American Society for Information

Science, 53(2), pp. 226-234

[Stanford2006] http://www-db.stanford.edu/~kevin/queryLanguage.html, October 16

[Zobel2006] Zobel, J. Personal communication. June

