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Abstract:  We present several new conservation functions of order 8 
and higher for cellular automata.  We introduce a new 
classification scheme using basis sets and non-trivial conservation 
function extensions. 
 

INTRODUCTION 
 

We make use of algorithms that permit increased efficiency 
in the calculation of conservation functions for cellular 
automata to report conservation laws for 1-D cellular automata 
of higher order than any previously known.  We introduce the 
notion of trivial and core conservation functions to distinguish 
truly new conservation functions from simple extensions of 
lower-order ones.  We give new theorems related to these 
concepts, and show our use of them to derive more efficient 
algorithms for finding conservation functions.  We then 
present the complete list of conservation functions up to order 
16 for the 256 elementary 1-d binary cellular automata.  These 
include CAs that were not previously known to have nontrivial 
conservation functions. 

Our classification scheme permits finer distinctions between 
CAs than merely their lowest order of conservation function 
by grouping functions together with identical sets of basis 
vectors and by distinguishing core functions from simple 
extensions.  Of the 88 equivalent 1-dimensional cellular 
automata, 8 have provably trivial conservation functions only, 
47 have conservation functions of various kinds, and 33 
remain unclassified.  Those that we have classified include 
CAs with newly discovered conservation functions of order 8, 
9, 12, 13 and 14.  Our calculations also show there are no CAs 
with conservation functions of order 15 or 16.  We therefore 
present the complete classification scheme for 1-dimensional 
cellular automata based on conservation functions up through 
order 16. 
 

TERMINOLOGY 
 

A one-dimensional cellular automaton is an array of finite 
size W of cells containing {0,1…s-1) .  The array is called the 
universe, and the number of cells it contains is the size of the 
universe.  The universe is considered to have no boundaries, 
which means in one dimension the end cells are considered 
adjacent to one another. 

The current set of values in each cell is the state of the 
universe.  This state changes over time based on a 
characteristic function, parameterized by a neighborhood size 
n.  To determine the next state of any cell, the state of the (n-
1)/2 cells on each side of the current cell, along with the state 
of the current cell itself is examined, and rules applied that 
uniquely determine the new state.  (Since we are only 
interested in symmetric neighborhoods, n will always be odd).  
The new state of the universe as determined by the parallel 
application of the characteristic function is called the 
successor state.  A 1-dimensional CA with s states and 
neighborhood of size n can be configured in ssn ways, not all 
of which are unique. 

Let x be the state of the universe at a given time, and xi be 
the state of cell i.  An energy function E(x) is defined as: 
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where subscripts outside the universe wrap around.  The 
energy function is a sum of the energy of n different regions, 
each of which contains m cells.  We refer to m as the order  of 
the function.  Let succ(x) be the successor state of the universe 
reached on the next time step if it starts in state x.  We say that 
E is conserved, or that E is an energy conservation function, 
iff, for all finite universes: 
 
Conserved:    ))(()( xx succEEx =∀  
 

This is equivalent to the following [1]: 
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where x and y are states that differ by exactly one cell.   

It can be shown that for neighborhood size of n=3, we need 
only analyze the energy of a 2m+3-cell array and the 2m+1-
cell array of its successor state in order to determine if a 
conservation law exists, despite the fact that the universe itself 
may be arbitrarily large.  This is what makes the computation 
of conservation functions possible.  

It is a theorem of Hattori and Takesue [1], later restated in 
simpler form in [2] and [3], that if we zero the block of cells in 

 



x and y either to the left or the right of the non-identical cell, 
our energy calculations will be unaffected.  Thus by applying 
this theorem over all possible (m+1)-cell states of the universe 
for a given CA gives a system of s(m+1) equations in sm 

unknowns, with the right hand side equal to zero.  If this 
system of equations has a solution (that is, if the resulting 
matrix has a non-empty null space), then an energy 
conservation function of order m has been found.  If it does 
not, then no such function exists for that CA. 
 

TRIVIAL, NON-TRIVIAL, AND CORE ENERGY CONSERVATION 
FUNCTIONS 

 
Clearly energy functions that assign the same value to all 

states are conserved.  We call such functions trivial.  Of 
greater interest are non-trivial energy conservation functions.  
Trivial functions can be eliminated from the solution space 
through the addition of a small number of additional 
constraints on the system, using the following two theorems 
we have proved [3]. 

Theorem 1: For a 1D, 2-state, neighborhood 3 cellular 
automaton, the following set of 2m-1 trivial energy functions 
form a basis set for all possible energy functions over m bits, 
where 1<S<2m-1. and expressions like 1S represent a 1 
followed by the bits of S in binary: 
 
 f0(x) =  1 
 fm-1(x) = 1 if x = 000…0001 
  -1 if x = 1000…000 
  0 otherwise 
 fS(x) = 1 if x = 0S or x=1S 
  -1 if x = S0 or x = S1 
  0 otherwise 
 

Theorem 2: For a 1D, 2-state, neighborhood 3 cellular 
automaton, a basis set for the set of all conserved linear 
functions over m bits can consist solely of energy functions 
satisfying the constraint f(0S)=0 for all m-1 element strings S.  
In other words, the energy of an m-cell region can be defined 
to be zero for any region whose leftmost cell is zero. 

Once a non-trivial conservation function of order m has 
been found, it can be extended in a very simple way to 
produce a function of order m+1 by ignoring the newly added 
cell on either side.   

The conservation functions reported in [1] do not 
distinguish between new functions derived in this way:  A 
conservation function of order m is by definition a 
conservation function of order n >= m for all n.  We believe, 
however, that it is useful to distinguish between conservation 
functions derived from existing ones by ignoring newly added 
cells and conservation functions that are completely different.   

We refer to a non-trivial conservation function for a given 
CA that cannot be derived from non-trivial conservation of 
lower order as a core function.  The core function of lowest 
order for a given CA is the primary core function for that CA.  
We call functions derived from a core by ignoring adjacent 
cells simple extensions. Simple extensions can be eliminated 

from the solution space through the addition of a small 
number of constraint equations [3]. 

Eliminating simple extensions allows for the possibility of a 
CA having a completely different conservation function that 
would otherwise not be detected.  Notice that through the 
judicious choice of basis vectors, we are able to reduce the 
size of the state space matrix by a factor of 2. 
 
AN ALGORITHM FOR CALCULATING CONSERVATION FUNCTIONS 

OF ORDER M FOR A GIVEN CA 
 

By examining in detail how each of the energy terms are 
formed, it is possible to generate the state space matrix 
without doing explicit lookups and generation of all states and 
next state vectors.  We do this by breaking the state space 
matrix up into three distinct matrices of different sizes, 
combining them only at the end when the null space must be 
calculated. 
 

To see how this is done, consider first the terms in E(X) –
E(Y), the energy terms in the X and Y initial states, and what 
happens to them as the order m increases.  We have for any m: 

 

 
 
where S0, S1 … are state counting bits (we have the leftmost 
bit change the fastest, for reasons that will become clear 
shortly).  The energy expressions E(X) and E(Y) are just the 
sums of the m-bit energy terms for the X and Y states 
respectively.  It is clear by inspection that all terms in E(X)-
E(Y) cancel except for those involving the center bit.  Because 
we may also assume that f(0,…) = 0 for our energy function f, 
the matrix for E(X)-E(Y) becomes  
 
–f(1 S0 S1 … Sm-2)  
 
where the S bits are as previously described.  In other words, 
each row has a -1 in the column indicated by bits 1S0S1…Sm-2.  
Making the leftmost 1 implicit in the column numbering, and 
reversing the column subscripts, we have 
 
For m=1, E(X) –E(Y) = -1 
 
For m=2, E(X) – E(Y) =  
 
S0 10 11 
0 -1 0 
1 0 -1 

 



 
For m=3, E(X) – E(Y) = 
 
S0S1 100 110 101 111 
00 -1 0 0 0 
10 0 -1 0 0 
01 0 0 -1 0 
11 0 0 0 -1 
 
and in general E(X)-E(Y) is given by a negative identity 
matrix of 2m-1 rows and 2m-1 columns. 
 

Now consider the energy terms of the successor states, 
E(X’) and E(Y’).  It is useful to first consider just those CAs 
that map the neighborhood region 000 to the 0 state.  We shall 
refer to these CAs as zero-preserving automata.   
 

For zero-preserving automata, we have the following 
relationship between X and its successor state X’: 

 

 
 
 
since zero-preserving automata map 000 to 0.  (Here CA[xyz] 
denotes the appropriate bit of the number of the CA written in 
binary).  A similar analysis holds for states Y and Y’. 
 

For m = 1, we can compute the energy difference of the 
successor states E(X’) – E(Y’) as 
 
{E(X’) –E(Y’)}1 = CA[00S0] + CA[0S0S1]  - CA[001] – 
CA[01S0] – CA[1S0S1] 
 
since all other terms cancel, and we assume the energy 
function f maps all terms with an MSB of 0 to 0.  Let us 
rewrite the conservation law as 
 
E(X) – E(Y) + E(Y’) – E(X’) = 0 
 
Plugging our formula for m=1 above gives 
 
-I + CA[001] + CA[01S0] + CA[1S0S1] - CA[00S0] - 
CA[0S0S1] = 0 
 
where I is the identity matrix.  Ignoring signs, we will refer to 
these terms as Ex-Ey, D1, D2, D3, R1 and R2 for reasons that 
will become apparent. 
 

We reorder this expression to group terms with identical 
numbers of state bits together, giving 
 

-I + CA[001]  + CA[01S0] - CA[00S0]  + CA[1S0S1] – 
CA[0S0S1] = 0 
 
or equivalently 
 
Ex-Ey + D1 + D2 – R1 + D3 – R2 = 0 
 

These six terms, with some bookkeeping, can be represented 
with three matrices of different sizes that grow in similar ways 
as m increases.  Their size differences do not matter until the 
calculation of a null space is required, at which time they can 
all be made of uniform size and summed. 
 

To see how this process works, first note that as m increases 
the energy terms grow to the right.  Using the convention of 
having the leftmost state bit increase first, if we read the CA 
bit index from right to left, then each increment of m 
corresponds to simply copying the existing matrix both above 
itself and horizontally, and then shifting the individual rows of 
the new matrix by exactly half the columns if a particular bit 
of the CA is 1. 
 

For example, consider the D1 term for CA = 50 = 00110010 
in binary.  Recall that we read CA bit indices from right to 
left.  For m=1, we have 
 

D11 = CA[001] = 1 
 
For m = 2, we have  
 
D12 = CA[001] CA[01S0] = CA[001] CA[010] = 1 0 
         CA[001] CA[011] = 1 0 
 
  S0 10 11 
 = 0 1 0 
  1 1 0 
 
meaning for the state with S0 = 0 this matrix has an energy 
term of f(10), just as it does for the state with S0 = 1 (recalling 
again that the MSB of 1 in the energy term is implicit in the 
column numbering).  Note that we obtained D12 from D1 by 
copying the rows, doubling the columns, and moving the 
individual columns over to the right half of the matrix based 
on the values of the vector CA[01S0] = (CA[010] CA[011]} = 
{0 0}. We refer to this doubling and shifting operation as 
expansion via the vector {0 0}, and refer to {0 0} as the 
expansion vector.  In this case both values in the expansion 
vector are zero so no shifting of the columns occurs. 
 
For m = 3, we have 
 
D13 = CA[001] CA[01S0]CA[1S0S1]  
 
           CA[001] CA[010] CA[100]  101 
       =  CA[001] CA[011] CA[110] = 100 
           CA[001] CA[010] CA[101]  101 
           CA[001] CA[011] CA[111]  100 

 



 
S0S1 100 110 101 111 
00 0 0 1 0 

     =       10 1 0 0 0 
01 0 0 1 0 
11 1 0 0 0 

 
meaning for the state with S0S1 = 00 this matrix contributes an 
energy term of f(101), and so forth.  This time the expansion 
vector is CA[1S0S1] = {CA[100] CA[110] CA[101] CA[111]} 
= {1 0 1 0}, corresponding to the third non-zero block in the 
previous figure. 
 
After m = 3, the expansion vector always CA[Sm-4Sm-3Sm-2].  
So D1 is now completely determined by: 
 
D11 = CA[001] 
D12 = expansion_via(D11, CA[01S0]) 
D13 = expansion_via(D12, CA[1S0S1]) 
D1m = expansion_via(D1m-1, CA[Sm-4Sm-3Sm-2]) for m > 3 
 

It can be shown that after m=1, D3 and R2 have identical 
expansion vectors and may therefore be combined into a 
single matrix C = D3-R2. Similarly, after m=2, D2 and R1 
may be combined into a single matrix B = D2 - R1.  Ex-Ey 
may be combined immediately with D1 into A = Ex-Ey+D1.  
Thus after some preliminary bookkeeping up through m=3, we 
need only maintain three energy term matrices A, B and C 
using only expansion operations with vectors derived from the 
CA under test.  When the desired m has been reached, we 
replicate A 4 times and B twice, and then solve the 2m+1 x 2m-1 
system of equations A+B+C = 0.   

 
We refer to the matrix A+B+C as the state space matrix N.  

Finding a conservation function of order m for a given CA 
requires calculating the null space of N.   

 
We see from the method of construction that A, B and C are 

sparse:  Each one is the sum of matrices with only one non-
zero term per row.  This means that N can have at most six 
non-zero terms per row, out of rows that contain 2m-1 entries.  
In practice, N also contains a large number of redundant rows.  
Empirical analysis shows that removing all duplicate rows 
from N reduces its size by about a factor of two. 

 
For an explicit listing of the algorithm using this technique 

to calculate conservation functions, as well as treatment of 
non-zero-preserving automata, the reader is referred to [3].  
This algorithm has been implemented in MATLAB, and has 
led to the results we now describe. 
 
 

A TAXONOMY FOR 1-D CELLULAR AUTOMATA BASED ON 
CONSERVATION LAWS 

 
We now present a complete taxonomy of 1-d CAs based on 

conservation functions of order m <= 16.  We use Wolfram’s 
numbering scheme [4] to denote particular CAs, in which the 

successive state b of a cell appears as bit number i in an 8-bit 
binary number that designates the CA, where i is itself a 3-bit 
binary number determined by the left, center and right cell 
contents in a CA’s next state rules.   

When examining all s-state CAs, symmetry laws can be 
seen to divide the set into equivalence classes.  Viewing the 
CA through a mirror produces a CA with identical properties, 
as does replacing state number j with state symbol s-j.  For 
binary CAs, repeated application of these laws divides the 256 
automata into 88 equivalence classes.  For purposes of this 
discussion, if a single CA is mentioned, it is understood to 
refer to all CAs in its class.  We will normally use the lowest 
numbered CA of a class to represent it. 

Some CAs can be shown to have no non-trivial energy 
conservation functions.  In particular, all CAs with next state 
functions of x0x0x000 have only trivial energy conservation 
functions, where x denotes 0 or 1.  For a proof of this, see [3]. 
 
A. Classification By Lowest Order Conservation Function 
 

We first present a table of CAs grouped by their lowest 
order conservation function.  Table 1 lists all CAs with 
conservation functions up through order 16, grouped by the 
order at which their first conservation function emerges.  With 
one exception, this table is identical at lower orders to that in 
[1], but extends it to significantly higher values of m. 

We note that [1] reports the existence of a CA with a 
conservation function at m=7.  Wolfram [4] disagrees, and our 
results support his conclusions.  We believe the entry in Table 
1 in [1] for CA 19h and its equivalence class at m=7 should be 
0. 

There are 3 CA equivalence classes with conservation 
functions of order 1:  The shifter (170 decimal/aa hex), the 
identity (208/cc), and 184/b8.  184/b8 is discrete asymmetric 
exclusion, and has been extensively studied [5].   

At m=2 there are 11 equivalence classes with second order 
conservation properties, 8 at m=3, and so forth.  The results 
for m >= 8 are, to our knowledge, new ([6] reports higher 
order results for reversible CAs only), as are the basis 
functions identified in the next section. 
 
B. Classification By Conservation Function Basis 
 

We can gain more insight into the structure of CA 
conservation functions by examining the basis of the 
associated null space, noting both the number of dimensions 
and the basis vectors themselves.  The tables in this section 
show the number of dimensions in the null space (which is 
equivalent to the dimensionality of the basis of the 
conservation function), and groups the CAs together for which 
the basis functions are identical.  Such CAs should be 
regarded as equivalent in some natural sense.  We can also 
examine what non-simple core functions emerge after the first 
one, as m increases. 

Table 2 shows the non-zero half of the conservation 
function basis vectors for CAs with primary cores at m=2 
through 5.  (The three CAs with primary cores at m=1 

 



conserve all functions on m bits and are therefore ignored).  
Entries that appear to the right of the first non-empty column 
represent functions that are also conserved and are not simple 
extensions of any cores to the left.  For example, the CA of 
15/f conserves the m=2-bit function f([10 11]) = [1 0], 
meaning that it conserves all “10” bit pairs.  It also conserves 
the 3-bit function f([100 101 110 111]) = [-1 1 -2 0], and so 
forth.  CAs with identical basis vectors for a given m are 
grouped by color.  This table and those that follow have the 
property that all m-bit conservation functions for the indicated 
CA are some linear combination of trivial functions and the 
basis vectors shown. 

The second-order conservation functions are exactly those 
identified in [2].  We believe all save 200/c8 belong together 
since they have identical basis vectors.  Fuks notes that all 
CAs with second-order conservation functions save 200/c8 
have identical invariants.  Our results are equivalent. 

Tables 3 and 4 show the dimensionality of null spaces and 
equivalence classes of CAs for all cores currently identified by 
our code.  A total of 33 equivalence classes remain to be 
classified.  For these CAs, neither impossibility proofs nor 
existence proofs for conservation functions are currently 
available.  The existence of an upper bound on the order of 

conservation functions for one-dimensional CAs of a given 
neighborhood size remains an open problem. 
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TABLE 1 

CA CLASSIFICATION BY ORDER OF FIRST CORE CONSERVATION FUNCTION (ALL NUMBERS IN DECIMAL/HEX) 

 
 

M CAs with conservation functions of order m 
1 170/aa 184/b8 204/cc         
2 12/c 14/e 15/f 34/22 35/23 42/2a 43/2b 51/33 140/8c 142/8e 200/c8 
3 2 3 4 10/a 56/38 76/4c 138/8a 172/ac    
4 1 11/b 27/1b 29/1d 38/26 40/28 72/48     
5 5 19/13 24/18 36/24 108/6c 132/84      
6 23/17 50/32 77/4d 178/b2 232/e8       
7 -           
8 44/2c 73/49          
9 7           
10 -           
11 -           
12 33/21           
13 164/a4           
14 98/58 104/68          
15 -           
16 -           

 

 

http://ftp.informatik.uni-trier.de/~ley/db/journals/tcs/tcs325.html#Boykett04


TABLE 2 
CONSERVATION FUNCTIONS, BASIS VECTORS AND EQUIVALENCE CLASSES FOR CAS WITH FIRST CORES FROM M=2 THROUGH M=5 

 
 

 m=2 m=3 m=4 m=5 
12/c [1 0]  [-1 -1  1  1  0 -2  0 0] [-5 -5  3  3  1  1  1  1  0 -8  2  2  0 -8  0  0] 
14/e [1 0]    
15/f [1 0] [-1  1 -2 0] [1  0 -1  0 -1  0  1  0 ] 

[2  2 -5  1 -5  1  0  0 ] 
[-20  4  8  0  4 -4  8  0  4 -4  8  0 12  4 -24  0 ] 
[11  0 -7  4 -5  4 -7  0 -3  4 -9  0 -11  0 11  0 ] 
[-5  4  1  0 -1  4 -3  0 -3  0 -1  4  1  0 -9  0 ] 
[-1  4 -3  0 -1  0 -3  4 -3  4 -1  0 -3  0 -5  0 ] 

34/22 [1 0]  [-1 -1  1  1  0 -2  0 0] [-5 -5  3  3  1  1  1  1  0 -8  2  2  0 -8  0  0] 
35/23 [1 0]    
42/2a [1 0] [0  0  1  0] [-1 -1  1  1  1 -1  0 0] [-3 -3  3  3  0  0  0  0  3 -3  0  0  0   0  0  0 ] 

[-2 -2  0  0  2  2  0  0 -1 -3  1  3  0  -6  0  0 ] 
[-2 -2  0  0 -1 -1  3  3 -1 -3  4  0  0 -6  0  0 ] 

43/2b [1 0]    
51/33 [1 0] [-1  1 -2 0] same as f same as f 
140/8c [1 0]  [-1 -1  1  1  0 -2  0 0] [-5 -5  3  3  1  1  1  1  0 -8  2  2  0 -8  0  0] 
142/8e [1 0]    
136/c8 [0 1]  [0  0  0  0  0  0 -1  1] [0  0  0  0  0  0  0  0 -1 -1 -1  3  0  0  0  0 ] 

[0  0  0  0  0  0  0  0  0  0  0  0  0  0 -3  3 ] 
2  [1 0 0 0]   
3  [1 0 0 0]  [-1 -1  1  1 -2  0  0  0 -2 -2  0  0  0  0  0  0] 
4  [1 1 -1 0]  [1  1  1  1 -3 -3  1  1 -1 -1  3 -1  0  0  0  0] 
10/a  [1 0 1 0] [1  1  0  2 -1 -1  0  0]  
56/38  [1 1 1 0]   
76/4c  [1 1 1 0] [1  1  1  1 -2 -2  3  0] [3  3  3  3  0  0 -12  0  0  0  0  0  0  0  3  0 ] 

[0  0  0  0  0  0  0  0 -3 -3  3  3  3 -3  0  0 ] 
[0  0  0  0  3  3 -13  3  2  2  0  0  1  3 -3  0] 

138/8a  [1 0 1 1] [-2 -2  0 -3  1  1  1 1] [0  0  0  0  0  0  1 -1 -1 -1 -1 -1  1  1  1  1] 
172/ac  [1 0 0 0]   
1   [1  0  0  0  0  0  0  0]  
11/b   [1  1  0  1  0  0  0  0]  
27/1b   [1  1  0  1  0  0  0  0]  
29/1d   [1  1  1  1  1  0  0  0] [-7 -7 -7 -7  3  3  3  3  3 13 -10 -10 -10  0  0  0] 
38/26   [1  1  0  0  0  1  0  0]  
46/2e   [1  1  0  0  0  1  0  0]  
72/48   [0  0  0  0  1  1 -1  0]  
5    [1  0  1  0  0  0  0  0  1  0  1  0  0  0  0  0] 

[2  2  2  1  1  1  1  1  0 -1  0 -1  0  0  0  0] 
19/13    [0  0  0  0  1  0  0  0  1  1  0  0  0  0  0  0] 
24/18    [1  1  1  0  0  0  0  0  0  0  1  1  1  0  0  0] 
36/24    [1  1  1  1 -1  0  0  0 -1 -1  0  1  0  0  0  0] 
108/6c    [1  1  1  1  1  0  0  1  1  1  0  0  0  1  0  0] 
132/84    [0  0  0  0  1  1  0  0  0  0 -1  0  0  0  0  0] 

 

 
 

 

 



TABLE 3 
EQUIVALENCE CLASSES AND DIMENSIONALITY OF CONSERVATION FUNCTIONS FOR CAS WITH FIRST CORES AT M=2 THROUGH M=6 

 
CA m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 m=11 
12/c 1  1 1 2 3 5 8 13 21 
14/e 1          
15/f 1 1 2 4 8 16 32 64 128 256 
34/22 1  1 1 2 3 5 8 13 21 
35/23 1          
42/2a 1 1 1 3 5 9 17 31 57 105 
43/2b 1          
51/33 1 1 2 4 8 16 32 64 128 256 
140/8c 1  1 1 2 3 5 8 13 20 
142/8e 1          
136/c8 1 1 1 2 4 7 12 21 37 65 
2  1   1 1 1 2 3 4 
3  1  1 2 3 5 9 16 28 
4  1  1 1 2 3 5 8 13 
10/a  1 1  1 3 4 5 9 16 
56/38  1         
76/4c  1 1 3 5 8 14 25 45 82 
138/8a  1 1 1 2 4 7 12 21 37 
172/ac  1   1 1 1 2 3 3 
1   1   1 2 3 4 6 
11/b   1        
27/1b   1   2 3 5 9 16 
29/1d   1 1  2 4 7 13 24 
38/26   1   1 2 2 4 8 
46/2e   1   1 1 1 2 3 
72/48   1   1 1 1 2 3 
5    2 2  2 7 8 21 
19/13    1   1 2 3 4 
24/18    1   1 1 1 2 
36/24    1   1 1 1 2 
108/6c    1 1 3 5 7 10 18 
132/84    1  2  4 1 8 
23/17     1  2  4 1 
50/32     1  2  4 1 
77/4d     2  4  8 2 
178/b2     1  2  4 1 
248/e8     2  4  8 2 

 
 
 
 
 TABLE 4  

EQUIVALENCE CLASSES AND DIMENSIONALITY OF CONSERVATION FUNCTIONS FOR CAS WITH FIRST CORE AT M=7 THROUGH M=16 
 

CA m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 m=11 m=12 m=13 m=14 m=15 
No CAs with primary cores at m=7 

44/2c       1  1      
73/49       1        
7        1  2     

No CAs with primary cores at m=10 
No CAs with primary cores at m=11 

33/21           1    
164/a4            1   
94/5e             *  
104/68             *  

No CAs with primary cores at m=15 
No CAs with primary cores at m=16 

 
*solution known to exist, but not yet calculated explicitly. 

 

 


