
New Higher-Order Conservation Functions
for 1-D Cellular Automata

Barry Fagin (barry.fagin@usafa.af.mil)

Leemon Baird (leemon.baird@usafa.af.mil)
Department of Computer Science

US Air Force Academy
Colorado Springs, CO 80840

719-333-3590

Abstract: We present several new conservation functions of order 8
and higher for cellular automata. We introduce a new
classification scheme using basis sets and non-trivial conservation
function extensions.

INTRODUCTION

We make use of algorithms that permit increased efficiency
in the calculation of conservation functions for cellular
automata to report conservation laws for 1-D cellular automata
of higher order than any previously known. We introduce the
notion of trivial and core conservation functions to distinguish
truly new conservation functions from simple extensions of
lower-order ones. We give new theorems related to these
concepts, and show our use of them to derive more efficient
algorithms for finding conservation functions. We then
present the complete list of conservation functions up to order
16 for the 256 elementary 1-d binary cellular automata. These
include CAs that were not previously known to have nontrivial
conservation functions.

Our classification scheme permits finer distinctions between
CAs than merely their lowest order of conservation function
by grouping functions together with identical sets of basis
vectors and by distinguishing core functions from simple
extensions. Of the 88 equivalent 1-dimensional cellular
automata, 8 have provably trivial conservation functions only,
47 have conservation functions of various kinds, and 33
remain unclassified. Those that we have classified include
CAs with newly discovered conservation functions of order 8,
9, 12, 13 and 14. Our calculations also show there are no CAs
with conservation functions of order 15 or 16. We therefore
present the complete classification scheme for 1-dimensional
cellular automata based on conservation functions up through
order 16.

TERMINOLOGY

A one-dimensional cellular automaton is an array of finite
size W of cells containing {0,1…s-1) . The array is called the
universe, and the number of cells it contains is the size of the
universe. The universe is considered to have no boundaries,
which means in one dimension the end cells are considered
adjacent to one another.

The current set of values in each cell is the state of the
universe. This state changes over time based on a
characteristic function, parameterized by a neighborhood size
n. To determine the next state of any cell, the state of the (n-
1)/2 cells on each side of the current cell, along with the state
of the current cell itself is examined, and rules applied that
uniquely determine the new state. (Since we are only
interested in symmetric neighborhoods, n will always be odd).
The new state of the universe as determined by the parallel
application of the characteristic function is called the
successor state. A 1-dimensional CA with s states and
neighborhood of size n can be configured in ssn ways, not all
of which are unique.

Let x be the state of the universe at a given time, and xi be
the state of cell i. An energy function E(x) is defined as:

()∑
−

=
−++=

1

0
11,...,)(

n

i
miiifE xxxx

where subscripts outside the universe wrap around. The
energy function is a sum of the energy of n different regions,
each of which contains m cells. We refer to m as the order of
the function. Let succ(x) be the successor state of the universe
reached on the next time step if it starts in state x. We say that
E is conserved, or that E is an energy conservation function,
iff, for all finite universes:

Conserved:))(()(xx succEEx =∀

This is equivalent to the following [1]:

))(()())(()(, yyxxyx succEEsuccEE −=−∀

where x and y are states that differ by exactly one cell.

It can be shown that for neighborhood size of n=3, we need
only analyze the energy of a 2m+3-cell array and the 2m+1-
cell array of its successor state in order to determine if a
conservation law exists, despite the fact that the universe itself
may be arbitrarily large. This is what makes the computation
of conservation functions possible.

It is a theorem of Hattori and Takesue [1], later restated in
simpler form in [2] and [3], that if we zero the block of cells in

x and y either to the left or the right of the non-identical cell,
our energy calculations will be unaffected. Thus by applying
this theorem over all possible (m+1)-cell states of the universe
for a given CA gives a system of s(m+1) equations in sm

unknowns, with the right hand side equal to zero. If this
system of equations has a solution (that is, if the resulting
matrix has a non-empty null space), then an energy
conservation function of order m has been found. If it does
not, then no such function exists for that CA.

TRIVIAL, NON-TRIVIAL, AND CORE ENERGY CONSERVATION
FUNCTIONS

Clearly energy functions that assign the same value to all

states are conserved. We call such functions trivial. Of
greater interest are non-trivial energy conservation functions.
Trivial functions can be eliminated from the solution space
through the addition of a small number of additional
constraints on the system, using the following two theorems
we have proved [3].

Theorem 1: For a 1D, 2-state, neighborhood 3 cellular
automaton, the following set of 2m-1 trivial energy functions
form a basis set for all possible energy functions over m bits,
where 1<S<2m-1. and expressions like 1S represent a 1
followed by the bits of S in binary:

 f0(x) = 1
 fm-1(x) = 1 if x = 000…0001
 -1 if x = 1000…000
 0 otherwise
 fS(x) = 1 if x = 0S or x=1S
 -1 if x = S0 or x = S1
 0 otherwise

Theorem 2: For a 1D, 2-state, neighborhood 3 cellular
automaton, a basis set for the set of all conserved linear
functions over m bits can consist solely of energy functions
satisfying the constraint f(0S)=0 for all m-1 element strings S.
In other words, the energy of an m-cell region can be defined
to be zero for any region whose leftmost cell is zero.

Once a non-trivial conservation function of order m has
been found, it can be extended in a very simple way to
produce a function of order m+1 by ignoring the newly added
cell on either side.

The conservation functions reported in [1] do not
distinguish between new functions derived in this way: A
conservation function of order m is by definition a
conservation function of order n >= m for all n. We believe,
however, that it is useful to distinguish between conservation
functions derived from existing ones by ignoring newly added
cells and conservation functions that are completely different.

We refer to a non-trivial conservation function for a given
CA that cannot be derived from non-trivial conservation of
lower order as a core function. The core function of lowest
order for a given CA is the primary core function for that CA.
We call functions derived from a core by ignoring adjacent
cells simple extensions. Simple extensions can be eliminated

from the solution space through the addition of a small
number of constraint equations [3].

Eliminating simple extensions allows for the possibility of a
CA having a completely different conservation function that
would otherwise not be detected. Notice that through the
judicious choice of basis vectors, we are able to reduce the
size of the state space matrix by a factor of 2.

AN ALGORITHM FOR CALCULATING CONSERVATION FUNCTIONS

OF ORDER M FOR A GIVEN CA

By examining in detail how each of the energy terms are
formed, it is possible to generate the state space matrix
without doing explicit lookups and generation of all states and
next state vectors. We do this by breaking the state space
matrix up into three distinct matrices of different sizes,
combining them only at the end when the null space must be
calculated.

To see how this is done, consider first the terms in E(X) –
E(Y), the energy terms in the X and Y initial states, and what
happens to them as the order m increases. We have for any m:

where S0, S1 … are state counting bits (we have the leftmost
bit change the fastest, for reasons that will become clear
shortly). The energy expressions E(X) and E(Y) are just the
sums of the m-bit energy terms for the X and Y states
respectively. It is clear by inspection that all terms in E(X)-
E(Y) cancel except for those involving the center bit. Because
we may also assume that f(0,…) = 0 for our energy function f,
the matrix for E(X)-E(Y) becomes

–f(1 S0 S1 … Sm-2)

where the S bits are as previously described. In other words,
each row has a -1 in the column indicated by bits 1S0S1…Sm-2.
Making the leftmost 1 implicit in the column numbering, and
reversing the column subscripts, we have

For m=1, E(X) –E(Y) = -1

For m=2, E(X) – E(Y) =

S0 10 11
0 -1 0
1 0 -1

For m=3, E(X) – E(Y) =

S0S1 100 110 101 111
00 -1 0 0 0
10 0 -1 0 0
01 0 0 -1 0
11 0 0 0 -1

and in general E(X)-E(Y) is given by a negative identity
matrix of 2m-1 rows and 2m-1 columns.

Now consider the energy terms of the successor states,
E(X’) and E(Y’). It is useful to first consider just those CAs
that map the neighborhood region 000 to the 0 state. We shall
refer to these CAs as zero-preserving automata.

For zero-preserving automata, we have the following
relationship between X and its successor state X’:

since zero-preserving automata map 000 to 0. (Here CA[xyz]
denotes the appropriate bit of the number of the CA written in
binary). A similar analysis holds for states Y and Y’.

For m = 1, we can compute the energy difference of the
successor states E(X’) – E(Y’) as

{E(X’) –E(Y’)}1 = CA[00S0] + CA[0S0S1] - CA[001] –
CA[01S0] – CA[1S0S1]

since all other terms cancel, and we assume the energy
function f maps all terms with an MSB of 0 to 0. Let us
rewrite the conservation law as

E(X) – E(Y) + E(Y’) – E(X’) = 0

Plugging our formula for m=1 above gives

-I + CA[001] + CA[01S0] + CA[1S0S1] - CA[00S0] -
CA[0S0S1] = 0

where I is the identity matrix. Ignoring signs, we will refer to
these terms as Ex-Ey, D1, D2, D3, R1 and R2 for reasons that
will become apparent.

We reorder this expression to group terms with identical
numbers of state bits together, giving

-I + CA[001] + CA[01S0] - CA[00S0] + CA[1S0S1] –
CA[0S0S1] = 0

or equivalently

Ex-Ey + D1 + D2 – R1 + D3 – R2 = 0

These six terms, with some bookkeeping, can be represented
with three matrices of different sizes that grow in similar ways
as m increases. Their size differences do not matter until the
calculation of a null space is required, at which time they can
all be made of uniform size and summed.

To see how this process works, first note that as m increases
the energy terms grow to the right. Using the convention of
having the leftmost state bit increase first, if we read the CA
bit index from right to left, then each increment of m
corresponds to simply copying the existing matrix both above
itself and horizontally, and then shifting the individual rows of
the new matrix by exactly half the columns if a particular bit
of the CA is 1.

For example, consider the D1 term for CA = 50 = 00110010
in binary. Recall that we read CA bit indices from right to
left. For m=1, we have

D11 = CA[001] = 1

For m = 2, we have

D12 = CA[001] CA[01S0] = CA[001] CA[010] = 1 0
 CA[001] CA[011] = 1 0

 S0 10 11
 = 0 1 0
 1 1 0

meaning for the state with S0 = 0 this matrix has an energy
term of f(10), just as it does for the state with S0 = 1 (recalling
again that the MSB of 1 in the energy term is implicit in the
column numbering). Note that we obtained D12 from D1 by
copying the rows, doubling the columns, and moving the
individual columns over to the right half of the matrix based
on the values of the vector CA[01S0] = (CA[010] CA[011]} =
{0 0}. We refer to this doubling and shifting operation as
expansion via the vector {0 0}, and refer to {0 0} as the
expansion vector. In this case both values in the expansion
vector are zero so no shifting of the columns occurs.

For m = 3, we have

D13 = CA[001] CA[01S0]CA[1S0S1]

 CA[001] CA[010] CA[100] 101
 = CA[001] CA[011] CA[110] = 100
 CA[001] CA[010] CA[101] 101
 CA[001] CA[011] CA[111] 100

S0S1 100 110 101 111
00 0 0 1 0

 = 10 1 0 0 0
01 0 0 1 0
11 1 0 0 0

meaning for the state with S0S1 = 00 this matrix contributes an
energy term of f(101), and so forth. This time the expansion
vector is CA[1S0S1] = {CA[100] CA[110] CA[101] CA[111]}
= {1 0 1 0}, corresponding to the third non-zero block in the
previous figure.

After m = 3, the expansion vector always CA[Sm-4Sm-3Sm-2].
So D1 is now completely determined by:

D11 = CA[001]
D12 = expansion_via(D11, CA[01S0])
D13 = expansion_via(D12, CA[1S0S1])
D1m = expansion_via(D1m-1, CA[Sm-4Sm-3Sm-2]) for m > 3

It can be shown that after m=1, D3 and R2 have identical
expansion vectors and may therefore be combined into a
single matrix C = D3-R2. Similarly, after m=2, D2 and R1
may be combined into a single matrix B = D2 - R1. Ex-Ey
may be combined immediately with D1 into A = Ex-Ey+D1.
Thus after some preliminary bookkeeping up through m=3, we
need only maintain three energy term matrices A, B and C
using only expansion operations with vectors derived from the
CA under test. When the desired m has been reached, we
replicate A 4 times and B twice, and then solve the 2m+1 x 2m-1
system of equations A+B+C = 0.

We refer to the matrix A+B+C as the state space matrix N.

Finding a conservation function of order m for a given CA
requires calculating the null space of N.

We see from the method of construction that A, B and C are

sparse: Each one is the sum of matrices with only one non-
zero term per row. This means that N can have at most six
non-zero terms per row, out of rows that contain 2m-1 entries.
In practice, N also contains a large number of redundant rows.
Empirical analysis shows that removing all duplicate rows
from N reduces its size by about a factor of two.

For an explicit listing of the algorithm using this technique

to calculate conservation functions, as well as treatment of
non-zero-preserving automata, the reader is referred to [3].
This algorithm has been implemented in MATLAB, and has
led to the results we now describe.

A TAXONOMY FOR 1-D CELLULAR AUTOMATA BASED ON
CONSERVATION LAWS

We now present a complete taxonomy of 1-d CAs based on

conservation functions of order m <= 16. We use Wolfram’s
numbering scheme [4] to denote particular CAs, in which the

successive state b of a cell appears as bit number i in an 8-bit
binary number that designates the CA, where i is itself a 3-bit
binary number determined by the left, center and right cell
contents in a CA’s next state rules.

When examining all s-state CAs, symmetry laws can be
seen to divide the set into equivalence classes. Viewing the
CA through a mirror produces a CA with identical properties,
as does replacing state number j with state symbol s-j. For
binary CAs, repeated application of these laws divides the 256
automata into 88 equivalence classes. For purposes of this
discussion, if a single CA is mentioned, it is understood to
refer to all CAs in its class. We will normally use the lowest
numbered CA of a class to represent it.

Some CAs can be shown to have no non-trivial energy
conservation functions. In particular, all CAs with next state
functions of x0x0x000 have only trivial energy conservation
functions, where x denotes 0 or 1. For a proof of this, see [3].

A. Classification By Lowest Order Conservation Function

We first present a table of CAs grouped by their lowest
order conservation function. Table 1 lists all CAs with
conservation functions up through order 16, grouped by the
order at which their first conservation function emerges. With
one exception, this table is identical at lower orders to that in
[1], but extends it to significantly higher values of m.

We note that [1] reports the existence of a CA with a
conservation function at m=7. Wolfram [4] disagrees, and our
results support his conclusions. We believe the entry in Table
1 in [1] for CA 19h and its equivalence class at m=7 should be
0.

There are 3 CA equivalence classes with conservation
functions of order 1: The shifter (170 decimal/aa hex), the
identity (208/cc), and 184/b8. 184/b8 is discrete asymmetric
exclusion, and has been extensively studied [5].

At m=2 there are 11 equivalence classes with second order
conservation properties, 8 at m=3, and so forth. The results
for m >= 8 are, to our knowledge, new ([6] reports higher
order results for reversible CAs only), as are the basis
functions identified in the next section.

B. Classification By Conservation Function Basis

We can gain more insight into the structure of CA
conservation functions by examining the basis of the
associated null space, noting both the number of dimensions
and the basis vectors themselves. The tables in this section
show the number of dimensions in the null space (which is
equivalent to the dimensionality of the basis of the
conservation function), and groups the CAs together for which
the basis functions are identical. Such CAs should be
regarded as equivalent in some natural sense. We can also
examine what non-simple core functions emerge after the first
one, as m increases.

Table 2 shows the non-zero half of the conservation
function basis vectors for CAs with primary cores at m=2
through 5. (The three CAs with primary cores at m=1

conserve all functions on m bits and are therefore ignored).
Entries that appear to the right of the first non-empty column
represent functions that are also conserved and are not simple
extensions of any cores to the left. For example, the CA of
15/f conserves the m=2-bit function f([10 11]) = [1 0],
meaning that it conserves all “10” bit pairs. It also conserves
the 3-bit function f([100 101 110 111]) = [-1 1 -2 0], and so
forth. CAs with identical basis vectors for a given m are
grouped by color. This table and those that follow have the
property that all m-bit conservation functions for the indicated
CA are some linear combination of trivial functions and the
basis vectors shown.

The second-order conservation functions are exactly those
identified in [2]. We believe all save 200/c8 belong together
since they have identical basis vectors. Fuks notes that all
CAs with second-order conservation functions save 200/c8
have identical invariants. Our results are equivalent.

Tables 3 and 4 show the dimensionality of null spaces and
equivalence classes of CAs for all cores currently identified by
our code. A total of 33 equivalence classes remain to be
classified. For these CAs, neither impossibility proofs nor
existence proofs for conservation functions are currently
available. The existence of an upper bound on the order of

conservation functions for one-dimensional CAs of a given
neighborhood size remains an open problem.

REFERENCES

[1] T. Hattori and S. Takesue, “Addditive conserved quantities in discrete-
time lattice dynamical stems,” Physica D, 49:295-322, 1991.
[2] H. Fukś, “Second order additive invariants in elementary cellular
automata,” submitted to Fundamenta Informaticae, Dec 2005.
[3] L. Baird and B. Fagin, “New algorithms and taxonomies for higher-
order conservation functions in cellular automata,” work in progress.
[4] S.Wolfram, A New Kind of Science, Wolfram Media, Inc., 2002 ISBN 1-
57955-008-8.
[5] H. Fukś, “Dynamics of CA rule 142,” Complex Systems, to appear.
[6] T. Boykett, “Efficient exhaustive listing of reversible one dimensional
cellular automata,” Theoretical Computer Science 325(2): 215-247 (2004)
[7] T. Boykett, “Towards a Noether-like conservation law theorem for one
dimensional reversible cellular automata,” Elsevier Science preprint.
[8] M. Pivato, “Conservation laws in cellular automata,” Nonlinearity 15
1781-1793 (2002).

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the U.S.
Department of Defense High Performance Computing
Initiative, the HPC Supercomputer Center at the Army
Research Laboratory, and the ARC Supercomputer Center at
the Astronautics Department of the US Air Force Academy.

TABLE 1

CA CLASSIFICATION BY ORDER OF FIRST CORE CONSERVATION FUNCTION (ALL NUMBERS IN DECIMAL/HEX)

M CAs with conservation functions of order m
1 170/aa 184/b8 204/cc
2 12/c 14/e 15/f 34/22 35/23 42/2a 43/2b 51/33 140/8c 142/8e 200/c8
3 2 3 4 10/a 56/38 76/4c 138/8a 172/ac
4 1 11/b 27/1b 29/1d 38/26 40/28 72/48
5 5 19/13 24/18 36/24 108/6c 132/84
6 23/17 50/32 77/4d 178/b2 232/e8
7 -
8 44/2c 73/49
9 7
10 -
11 -
12 33/21
13 164/a4
14 98/58 104/68
15 -
16 -

http://ftp.informatik.uni-trier.de/~ley/db/journals/tcs/tcs325.html#Boykett04

TABLE 2
CONSERVATION FUNCTIONS, BASIS VECTORS AND EQUIVALENCE CLASSES FOR CAS WITH FIRST CORES FROM M=2 THROUGH M=5

 m=2 m=3 m=4 m=5
12/c [1 0] [-1 -1 1 1 0 -2 0 0] [-5 -5 3 3 1 1 1 1 0 -8 2 2 0 -8 0 0]
14/e [1 0]
15/f [1 0] [-1 1 -2 0] [1 0 -1 0 -1 0 1 0]

[2 2 -5 1 -5 1 0 0]
[-20 4 8 0 4 -4 8 0 4 -4 8 0 12 4 -24 0]
[11 0 -7 4 -5 4 -7 0 -3 4 -9 0 -11 0 11 0]
[-5 4 1 0 -1 4 -3 0 -3 0 -1 4 1 0 -9 0]
[-1 4 -3 0 -1 0 -3 4 -3 4 -1 0 -3 0 -5 0]

34/22 [1 0] [-1 -1 1 1 0 -2 0 0] [-5 -5 3 3 1 1 1 1 0 -8 2 2 0 -8 0 0]
35/23 [1 0]
42/2a [1 0] [0 0 1 0] [-1 -1 1 1 1 -1 0 0] [-3 -3 3 3 0 0 0 0 3 -3 0 0 0 0 0 0]

[-2 -2 0 0 2 2 0 0 -1 -3 1 3 0 -6 0 0]
[-2 -2 0 0 -1 -1 3 3 -1 -3 4 0 0 -6 0 0]

43/2b [1 0]
51/33 [1 0] [-1 1 -2 0] same as f same as f
140/8c [1 0] [-1 -1 1 1 0 -2 0 0] [-5 -5 3 3 1 1 1 1 0 -8 2 2 0 -8 0 0]
142/8e [1 0]
136/c8 [0 1] [0 0 0 0 0 0 -1 1] [0 0 0 0 0 0 0 0 -1 -1 -1 3 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 3]
2 [1 0 0 0]
3 [1 0 0 0] [-1 -1 1 1 -2 0 0 0 -2 -2 0 0 0 0 0 0]
4 [1 1 -1 0] [1 1 1 1 -3 -3 1 1 -1 -1 3 -1 0 0 0 0]
10/a [1 0 1 0] [1 1 0 2 -1 -1 0 0]
56/38 [1 1 1 0]
76/4c [1 1 1 0] [1 1 1 1 -2 -2 3 0] [3 3 3 3 0 0 -12 0 0 0 0 0 0 0 3 0]

[0 0 0 0 0 0 0 0 -3 -3 3 3 3 -3 0 0]
[0 0 0 0 3 3 -13 3 2 2 0 0 1 3 -3 0]

138/8a [1 0 1 1] [-2 -2 0 -3 1 1 1 1] [0 0 0 0 0 0 1 -1 -1 -1 -1 -1 1 1 1 1]
172/ac [1 0 0 0]
1 [1 0 0 0 0 0 0 0]
11/b [1 1 0 1 0 0 0 0]
27/1b [1 1 0 1 0 0 0 0]
29/1d [1 1 1 1 1 0 0 0] [-7 -7 -7 -7 3 3 3 3 3 13 -10 -10 -10 0 0 0]
38/26 [1 1 0 0 0 1 0 0]
46/2e [1 1 0 0 0 1 0 0]
72/48 [0 0 0 0 1 1 -1 0]
5 [1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0]

[2 2 2 1 1 1 1 1 0 -1 0 -1 0 0 0 0]
19/13 [0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0]
24/18 [1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0]
36/24 [1 1 1 1 -1 0 0 0 -1 -1 0 1 0 0 0 0]
108/6c [1 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0]
132/84 [0 0 0 0 1 1 0 0 0 0 -1 0 0 0 0 0]

TABLE 3
EQUIVALENCE CLASSES AND DIMENSIONALITY OF CONSERVATION FUNCTIONS FOR CAS WITH FIRST CORES AT M=2 THROUGH M=6

CA m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 m=11
12/c 1 1 1 2 3 5 8 13 21
14/e 1
15/f 1 1 2 4 8 16 32 64 128 256
34/22 1 1 1 2 3 5 8 13 21
35/23 1
42/2a 1 1 1 3 5 9 17 31 57 105
43/2b 1
51/33 1 1 2 4 8 16 32 64 128 256
140/8c 1 1 1 2 3 5 8 13 20
142/8e 1
136/c8 1 1 1 2 4 7 12 21 37 65
2 1 1 1 1 2 3 4
3 1 1 2 3 5 9 16 28
4 1 1 1 2 3 5 8 13
10/a 1 1 1 3 4 5 9 16
56/38 1
76/4c 1 1 3 5 8 14 25 45 82
138/8a 1 1 1 2 4 7 12 21 37
172/ac 1 1 1 1 2 3 3
1 1 1 2 3 4 6
11/b 1
27/1b 1 2 3 5 9 16
29/1d 1 1 2 4 7 13 24
38/26 1 1 2 2 4 8
46/2e 1 1 1 1 2 3
72/48 1 1 1 1 2 3
5 2 2 2 7 8 21
19/13 1 1 2 3 4
24/18 1 1 1 1 2
36/24 1 1 1 1 2
108/6c 1 1 3 5 7 10 18
132/84 1 2 4 1 8
23/17 1 2 4 1
50/32 1 2 4 1
77/4d 2 4 8 2
178/b2 1 2 4 1
248/e8 2 4 8 2

 TABLE 4

EQUIVALENCE CLASSES AND DIMENSIONALITY OF CONSERVATION FUNCTIONS FOR CAS WITH FIRST CORE AT M=7 THROUGH M=16

CA m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 m=11 m=12 m=13 m=14 m=15
No CAs with primary cores at m=7

44/2c 1 1
73/49 1
7 1 2

No CAs with primary cores at m=10
No CAs with primary cores at m=11

33/21 1
164/a4 1
94/5e *
104/68 *

No CAs with primary cores at m=15
No CAs with primary cores at m=16

*solution known to exist, but not yet calculated explicitly.

