
EXTENDING CRITICAL MARK DENSITIES IN CONCURRENT CODECS THROUGH THE USE
OF INTERSTITIAL CHECKSUM BITS

William L. Bahn
Leemon C. Baird III

United States Air Force Academy

Abstract— The advent of concurrent coding theory allows
omnidirectional communication systems to enjoy a level of keyless
jam-resistance comparable to the keyed jam-resistance of tra-
ditional spread spectrum systems, all of which rely on shared
secrets. To achieve this, concurrent codecs possess the ability
to efficiently separate multiple legitimate codewords that have
been superimposed. Doing so requires the ability to efficiently
discriminate between true codewords and hallucinations (which
are codewords or partial codewords that materialize due to the
interaction of transmitted codewords, both with each other and
with channel noise). Hallucinations that survive the decoding
process through the end of the encoded message can be expo-
nentially exterminated by appending checksum bits to the end of
the message prior to encoding. While these terminal checksum
bits can reduce the final hallucination rate to an arbitrarily low
level using a very reasonable number of checksum bits, they
do not prevent the computational effort of the receiver from
increasing exponentially as the packet mark density rises above
fifty percent. However, by embedding checksum bits within the
interior of the message body, this exponential blow-up can be
postponed to arbitrarily high packet mark densities. This paper
presents the theory behind the use of these interstitial checksum
bits and analyzes their impact on receiver performance and jam-
resistance.

I. THE NEED FOR KEYLESS JAM-RESISTANCE

Wireless networks operating in hostile environments re-
quire high degrees of jam-resistance to ensure the availabil-
ity of network resources. The two traditional means of pro-
viding this are highly-directional links or spread spectrum.
The exclusive use of directional links in highly dynamic
mobile ad hoc networks poses practical challenges that
virtually guarantee that omnidirectional links will continue
to play a significant role in such networks. However, spread
spectrum techniques are only as secure as the shared-secrets
(i.e., symmetric keys) upon which their jam-resistance is
based; this, in turn, is limited by the classic key distribution
problem associated with such keys. Therefore a means is
needed of ensuring the availability of the channel in large
omnidirectional wireless networks that does not rely on
symmetric keys.

A seemingly obvious alternative are asymmetric keys

since ways of using them to ensure the other classic security
goals (i.e., confidentiality, integrity, and authenticity) are
well understood. Unfortunately, these all assume and re-
quire that data can be successfully exchanged between par-
ties, implying that the communications channel is already
available. Consequently, the conclusion is that a means is
needed of ensuring the availability of the channel in large
omnidirectional wireless networks that does not rely on
secret keys at all.

This conclusion can be reached independently by con-
sidering a different category of application altogether –
namely public-access systems. One example is civilian GPS
where communications are one-way and where the pool of
authorized users is literally every person on the planet. In
this case, secret keys of any kind are precluded since, by
definition, hostile parties are authorized users with access
to the same keys as everyone else.

For an unkeyed system – a system with no secret keys –
to be jam-resistant, it must be capable of dealing with mul-
tiple overlapping transmissions of legitimate waveforms:
some from friendly sources and some from hostile sources.
This problem is closely related to the field of superim-
posed codes; historically such codes have been limited
to applications in which membership testing is sufficient
since, until recently, no efficient means of fully decoding
a superimposed transmission has existed. This situation
changed fundamentally with the advent of concurrent codes;
by definition, these are superimposed codes that can be
efficiently decoded. In fact, although only one realized
construction of a practical concurrent code presently exists,
its decoding complexity is linear-time with respect to the
product of the length and number of transmitted messages.

II. A BRIEF REVIEW OF CONCURRENT CODING

THEORY

A detailed explanation of concurrent coding theory is
available in [1] and [2], but is not yet widely disseminated,
thus a brief summary is provided here. The foundation
upon which concurrent codes rest is the decades-old field
of superimposed codes[3], of which Bloom filters[4] are an

example. The heart of a superimposed code is an encoding
algorithm whereby a packet containing several different
messages can be constructed by performing a bitwise-OR
of the codewords corresponding to the chosen messages.
Going the other way, a packet is considered to contain a
particular message if it “covers” that message, meaning that
all of the marks (i.e., bits that are HI) in the codeword
for that message are contained in the packet. Ideally, a
packet should only cover those messages used to construct
it. In practice, this will only be true up to a point; if too
many messages are placed into a packet then it will begin
covering additional messages. These additional messages
go by a variety of different names; here they are referred to
as hallucinations. In general, parameters in the coding and
decoding (i.e., codec) algorithms permit the user to control,
at least statistically, how many messages can be contained in
a packet before hallucinations start to appear. The extreme
case of this occurs when the packet consists solely of
marks, in which case it covers every possible message and,
consequently, contains absolutely no information.

Historically, superimposed codes have been used where
it is sufficient to ask if a particular message, or small set of
messages, is covered by the given packet. This is done by
performing a “membership test” which involves verifying
that all of the marks in the message being tested are
covered by the packet. Membership tests can be performed
very efficiently; conceptually they involve nothing more
than a bitwise-AND between the codeword and the bitwise
complement of the packet with any non-zero result declared
a failure.

However, if it is necessary to generate a list of all
messages covered by the packet - referred to here as
decoding the packet - then an exhaustive search spanning
the entire message space is generally needed. As recently
as 2003, it has been claimed by at least one researcher
[5] that no efficient means of decoding arbitrary codewords
from very large code books yet exists. Decoding therefore
requires an exponential amount of time as a function of the
message length. While acceptable for applications having a
sufficiently small message space as well as sufficient time
and processing power to perform the work, it is totally
infeasible given the message spaces, processing capabili-
ties, and time constraints found in typical communication
systems.

Thus, for communication systems, a subset of superim-
posed codes is needed in which the entire list of messages
can be extracted from a packet in an “efficient” manner.
This requirement is the defining characteristic of a con-

current code compared to the broader set of superimposed
codes.

III. A REVIEW OF THE BBC ENCODING AND

DECODING ALGORITHMS

The BBC algorithms are a pair of algorithms that encode
and decode data into concurrent message packets. Like
concurrent coding theory itself, extensive details about them
and their behavior are now in the open literature[1], [2] and
only a brief description is provided here. The underlying
basis for the BBC algorithms is that m-bits of data are first
transformed into a message and this message is then en-
coded one bit at a time, using progressively longer prefixes,
to construct a c-bit codeword. This allows for the efficient
decoding of the packet since the messages can be extracted
one bit at a time by looking for progressively longer
message prefixes and data extracted from the recovered
message.

The BBC algorithms are a pair of algorithms that encode
and decode data to and from concurrent message packets.
Like concurrent coding theory itself, extensive details about
them and their behavior are now in the open literature[1],
[2] and only a brief description is provided here. The
underlying basis for the BBC algorithms is that m-bits of
data are first transformed into a message which is then
encoded, one bit at a time, using progressively longer
prefixes to construct a c-bit codeword. This allows for the
efficient decoding of the packet since messages can be
recovered one bit at a time by looking for progressively
longer message prefixes. Finally, the data can be extracted
from the recovered message.

In practice decoding a packet is most efficiently done
using a depth-first search of the message space; however, it
is easiest to describe in terms of a breadth first search, as
depicted in Algorithm 2.

The dominant parameter in the algorithm is the expansion
factor, e, which is the ratio of the length of the codeword,
c, to the length of the original data, m (i.e., c = me).
The expansion factor determines how the output of the
hash function is interpreted; specifically, it is interpreted
as being one of the c possible locations in the codeword.
The expansion factor is roughly equivalent to the processing
gain of a traditional spread spectrum system, both in terms
of bandwidth spreading and in terms of the degree of jam-
resistance.

One important point to note about concurrent codes – and
true of all superimposed codes – is that any one codeword is
relatively sparse, consisting almost entirely of spaces with
a few pseudorandomly scattered marks. The fraction of a

2

Algorithm 1 BBC Encode(D)

This function takes m-bits of data, pads it with k check-
sum bits at locations specified by the protocol in use to
produce the message M , and then places marks in the
codeword P at locations determined by hashes of all
possible prefixes of the padded message.

M = D with k spaces added as specified by the protocol.
P ← 0 (i.e., P is a c-bit vector initialized to all spaces)
for (n← 1 . . .m+ k (m+ k = length(M))) do

Compute L = Hash(M [1 . . . n]) such that 1 ≤ L ≤ c
Place a mark in P at location L

end for
return P

NOTES:
1) M [1 . . . n] is the n-bit prefix of M .
2) 1 ≤ Hash(X) ≤ c.

codeword (or packet), that consists of marks is referred to
as the mark density; this plays a key role in determining
decoder performance.

IV. THE ROLE OF CHECKSUM BITS

Checksum bits kill hallucinations. They do this by in-
serting k marks into the codeword at locations that are a
function of the entire message or, in the case of interstitial
checksum bits, the message up to the point at which they
were inserted. Since the decoder knows a priori the value
of all checksum bits, the list of covered prefixes cannot
grow when decoding a checksum bit. Furthermore, any
hallucinations that exist in the list will survive the decoding
of a checksum bit purely by chance. In general, the fraction
of hallucinations that survive the decoding of a checksum
bit is equal to the packet’s mark density (since that is the
probability that the mark corresponding to the checksum
bit will coincide with an unrelated mark in the packet).
A detailed analysis of the impact of both terminal and
interstitial checksum bits appears later in this paper.

V. THE PHYSICAL OR-CHANNEL

Concurrent codes, like their superimposed brethren, re-
quire an OR-channel if they are to retain necessary prop-
erties. An OR-channel is one in which all of the code-
words present in a channel are combined via a bitwise-
OR operation. From a practical standpoint, this means that

Algorithm 2 BBC Decode(P)

This function decodes all of the data in a given packet
by first identifying all messages covered by the packet
and then extracting the data from each covered message.
At any given stage of the process, a list of message
prefixes that are covered by the packet is maintained.
The prefixes are lengthened one bit at a time and only
those still covered are retained. If the next message bit
is a checksum bit, then the prefix extended with a ‘0’ bit
is considered. However, if the next message is a data bit
then the prefix extended with a ‘1’ bit is also considered.

M ← {} (i.e., M is an empty message list)
for (n← 1 . . . (m+ k)) do

Expand partial messages in list to n-bits
for (Each partial message, Mj , in M) do

Remove Mj from list M
Add Mj : 0 to list M (i.e., append a ‘0’)
if n corresponds to a data bit then

Add Mj : 1 to list M (i.e., append a ‘1’)
end if

end for
Prune messages from list
for (Each partial message, Mj , in M) do

Compute L = Hash(Mj)
if P does not contain a mark at location L then

Remove Mj from list M
end if

end for
end for
Extract the data from the messages
for (Each message, Mj , in M) do

Strip all checksum bits from Mj

end for

the receiver should produce a mark whenever any of the
transmitters are broadcasting a mark and should produce a
space only when all of the transmitters are broadcasting
a space. This is difficult to achieve with most modern
binary modulation schemes because they are designed to
produce symmetric channels having nearly identical bit
error probabilities, regardless of whether a mark or space
is transmitted, as this minimizes the overall bit error rate
(BER). However, by using a highly asymmetric channel,
such as old-fashioned On-Off Keying (OOK), an OR-
channel can be implemented with a very high degree
of fidelity by setting the detection threshold sufficiently

3

low. Since such a channel is not symmetric, it cannot be
characterized by a single error rate. Instead, it has a mark
error rate (MER) and a space error rate (SER). The MER
is the probability that a space will be received even though
one or more marks were transmitted and the SER is the
probability that a mark will be received even though no
marks were transmitted. In general, lowering the detection
threshold will lower the MER at the expense of raising the
SER.

VI. JAM-RESISTANT NATURE OF CONCURRENT CODES

IN AND OR-CHANNEL

At this point it is possible to understand how concurrent
codecs provide high degrees of assurance that the channel
will remain available even in the presence of considerable
hostile jamming. If a sender transmits a message that is
encoded with a concurrent codec, then as long as all trans-
mitted narks are received, the message will be contained in
the list of messages produced by the receiving codec. By
contrast, successful reception of all spaces is not necessary;
in fact, a significant fraction can be received erroneously as
marks without significant impact on decoder performance.
The attacker thus has two options available to them: (1)
they can try to force the receiver to make a mark error, or
(2) they can try to flood the receiver with space errors (false
marks).

The first option, while highly attractive since the decoder
is extremely sensitive to mark errors, is not very practical
because once the sender transmits energy into the spectrum,
the attacker cannot easily remove that energy; they can
add to it or corrupt it, but they cannot easily diminish it
in any practically meaningful sense. The receiver, on the
other hand, is not relying on being able to extract any
information from the energy that was transmitted beyond
the mere detection of its existence. If the receiver’s de-
tection threshold is sufficiently low, detection is virtually
guaranteed. Furthermore, promising methods of tolerating
modest mark error rates are presently being explored.

This leaves the second option which, while not partic-
ularly attractive since the decoder is highly insensitive to
space errors, is never-the-less always possible. The hostile
party can almost certainly force a sufficiently high space
error rate so that packet is beyond the codec’s ability to
decode it with the available resources. However, doing so
requires the attacker to expend considerably more energy in
the attack than the genuine sender did thus exposing them
to the network defenders. In order to successfully jam the
channel the attacker must accept a commensurate level of

risk; if that risk can be made unacceptable at the level of
effort required to jam the channel, then the channel will
most likely remain available.

It should be emphasized that concurrent codecs promise
neither jam-proof communications nor a level of jam-
resistance greater than that of uncompromised spread spec-
trum. What concurrent codecs provide is a comparable level
of jam-resistance without the need for symmetric keys and
the corresponding key management nightmare. Thus, from
a practical perspective, concurrent codes can be viewed not
as a means of improving jam-resistance, but as a tool for
improving key management.

VII. DECODER PERFORMANCE METRICS

Since the primary attack against a concurrent codec is to
overload the processing capacity of the receiver’s decoder,
the primary measure of receiver effort is the computation
workload per genuine message recovered. A very good
proxy for this workload is the number of calls to the
hash function. Since a fixed number of calls to the hash
function are made for each entry in the message list at each
stage of decoding, a near-direct measure of the workload
is the average number of messages in the list over the
entire decoding process divided by the number of genuine
messages recovered. Thus to determine the workload we
must examine the size of the message list throughout the
decoding process.

After the nth decoding stage, the total number of mes-
sages in the message list is

MT (n) = M +H(n) = (MS +MA) +H(n) (1)

where MT (n) consists of two parts: the number of in-
tentional (i.e., properly encoded) messages, M , which is
constant, and the number of hallucinations, H(n), which
is variable. The intentional messages, M , can be further
broken into two subgroups, those transmitted by the genuine
sender, MS , and those transmitted by the attacker, MA.

The attacker can always force the receiver to do an
amount of work at least roughly proportional to the num-
ber of properly encoded messages, MA, that the attacker
transmits. This is inherent in the fact that the system has
no secret keys meaning the attacker always has the ability
to properly encode messages. Fortunately, itself this is not
a serious threat since to force twice the workload on the
receiver the attacker is forced to transmit roughly twice the
energy and, in doing so, accepts a proportionately greater
risk of detection and localization. Furthermore, although the
attack messages will survive decoding and be included in

4

the final message list, higher levels in the communications
stack have the ability to discriminate against by authenticat-
ing digital signatures contained in the legitimate messages.

The attacker’s goal is to force the production of large
(preferably exponential) numbers of hallucinations per at-
tack message because then they have the potential to
overwhelm the decoder while remaining acceptably covert.
In essence, the attacker must pay for attack messages but
hallucinations are free. Thus the key to quantifying decoder
workload is to understand the expected behavior regarding
the production and extermination of hallucinations per
properly formatted message.

VIII. GENERAL HALLUCINATION BEHAVIOR

Hallucinations can be broken into three categories: work-
ing, terminal, and realized. Working hallucinations are those
that exist during the decoding process and manifest them-
selves as false partial messages that are indistinguishable
from (and must therefore be processed identically to) true
messages. Working hallucinations are continually generated
and extinguished as part of the normal decoding process.
Those that exist once the last data bit has been decoded are
the terminal hallucinations; these are exponentially exter-
minated by any terminal checksum bits. Any hallucinations
that survive the final checksum bit are realized as false
messages (hence the term “realized hallucinations”) and
passed to higher levels of the network stack for disposi-
tion; this is straightforward if legitimate messages contain
authentication information.

As will be shown, terminal and realized hallucinations
pose little threat because, as will be shown, even modest
numbers of terminal checksum bits provide extremely high
levels of discrimination against terminal hallucinations.
Similarly, any realized hallucinations that seep through are
effectively, additional attack messages that can be discrim-
inated against using the same authentication process.

On the other hand, working hallucinations are the dom-
inant factor in determining the decoder workload. If the
decoder can’t keep up with the processing requirements, the
channel becomes jammed or, at the very least, packets start
being dropped as load-shedding begins. At any particular
decoding stage the rate at which hallucinations are formed
and extinguished depends directly on two things: the packet
mark density, µ, and whether the bit being decoded is a
data bit or a checksum bit. These relationships are shown
in Figure 1.

If bit n is a data bit, then as each actual message
is extended using the next bit in the actual data string
there is an assumed 100% chance of finding the associated

Fig. 1. Hallucination generation and propagation probabilities.

mark. However, making the worst-case assumption that all
intentional messages have distinct prefixes by this stage,
then when using the other choice for the next data bit there
is still a chance, equal to µ, that the mark will be found thus
producing a hallucination. Likewise, every hallucination
that exists at this stage has the potential to producing two
hallucinations for the next stage, each with probability µ.
Thus the number of expected hallucinations after this stage
of decoding is

H(n) = µM + 2µH(n− 1) (n is a message bit) (2)

On the other hand, if bit n is a checksum bit then only
one possible value for the next bit, namely 0, will be
examined. In the case of actual messages, it is assumed that
the corresponding mark will be found, but hallucinations
only have a probability µ of surviving. Thus the number of
expected hallucinations after this stage of decoding

H(n) = µH(n− 1) (n is a checksum bit) (3)

IX. HALLUCINATION PERFORMANCE OF AN

UNENHANCED BBC-BASED CODEC

For our purposes, an unenhanced BBC-codec forms
messages by appending k terminal checksum bits to m-
bits of data as the first step in Algorithm 1. Statistically
speaking, as long as the packet density remains below
some critical density, µc, the hallucination density – number
of hallucinations per intentional message – quickly settles
to a steady state value. The hallucination density remains
near the steady state level until the terminal checksum
bits are encountered at which time the remaining terminal
hallucinations are exterminated exponentially. The steady
state hallucination density, HSSD, can be found by equating
the hallucinations at two adjacent stages of the decoding

5

process and, since it is a density, dividing by the total
number of intentional messages. This yields a steady state
hallucination density of

HSSD =
H(n)
M

=
µ

(1− 2µ)
(4)

This result also allows us to determine the critical packet
density since HSSD becomes singular as the denominator
approaches zero. Thus

µc = 0.5 (5)

For an (m+k)-bit message, the terminal checksum bits are
reached at stage m, thus H(m) represents the number of
terminal hallucinations that must be exterminated by the ter-
minal checksum bits; these are exterminated exponentially
according to the relation

H(m+ i) = H(m)µi for 0 ≤ i ≤ k (6)

In particular, if there are k terminal checksum bits, then the
expected density of realized hallucinations is

HRD = µkHSS =
µ(k+1)

(1− 2µ)
(7)

The results shown in Figure 2 validate the above pre-
dictions. In this test run, one thousand 200-bit messages
were superimposed in the same packet bringing the packet
density to 33.8%. The expected steady-state hallucination
density at this packet density, per Equation 4, is 1.04 hallu-
cinations per message. The predicted performance is shown
by the thin line while the actual performance is represented
by the bold line. As is evident, the actual performance tracks
the predicted performance very closely throughout the de-
coding process, including the initial build up, in steady state,
and during the terminal checksum decoding. With eight
terminal checksum bits and a packet density of 33.8%, the
predicted density of realized hallucinations is only 170 ppm;
hence, even with 1000 messages spawning hallucinations
and with only eight terminal checksum bits there is less
than a one-in-five chance that a single hallucination will
survive the decoding process.

The apparent negative hallucination density in Figure 2
during the initial decoding stages is an artifact of the math
since, early on, there are insufficient bits in the partial
messages to support as many messages as are known to exist
in the packet, thus the computed number of hallucinations
is negative.

Fig. 2. Hallucination workload of an unenhanced BBC-codec.

X. THE USE OF INTERSTITIAL CHECKSUM BITS

Early in the development of the BBC algorithms, the
notion of distributing the checksum bits amongst the data
bits was considered. However, once it was realized that the
decoder quickly reached a steady-state hallucination level,
it was apparent that the use of checksum bits within the
message interior would provide only a transient reduction
in the hallucination level and have no impact on the number
of terminal hallucinations (unless, of course, they appeared
very close to the end of the message itself). As a result,
the number of terminal checksum bits needed would not
be reduced and the use interstitial checksum bits did not
appear justifiable.

However, owing purely to academic curiosity, a codec
was written that permitted checksum bits to be inserted
within the message body by breaking the data into frag-
ments and prepending each fragment with a string of check-
sum bits. For simplicity the first test involved inserting one
checksum bit prior to each data bit, thus effectively doubling
the length of the message, the decoding chain, and the
number of marks in each codeword. The simulator, already
configured to produce about ten hallucinations per message
(in an unenhanced codec, meaning that it was producing
packets with a mark density of about 47%) yielded a
very unexpected result. Even though there were twice as
many decoding stages the enhanced decoder finished in well
under half the time required by the unenhanced codec. This
observation prompted a closer examination of the expected
behavior.

6

XI. PREDICTED HALLUCINATION PERFORMANCE OF AN

ENHANCED BBC-BASED CODEC

For our purposes, an enhanced codec is one where data
is broken into fragments consisting of d data bits separated
by groups of s interstitial checksum bits; for simplicity,
these will be referred to as “fragment” and “clamping”
bits, respectively, in this section. As with the unenhanced
codec, we are primarily concerned with the steady state
workload imposed on the decoder as a result of the presence
of working hallucinations. However the enhanced codec
oscillates between two hallucination levels; after decoding a
fragment of data the working hallucinations will be at their
highest level, HH , and will then fall to their lowest level,
HL, after decoding the next group of clamping bits.

The relationships described in Figure 1 and quantified in
Equations 2 and 3 still apply. Using these, the hallucination
level after decoding s clamping bits is

HL = µsHH (8)

while the hallucination level after decoding d fragment bits
is

HH = M

[
µ

1− (2µ)d

1− 2µ

]
+ (2µ)dHL (9)

Combining these two results and dividing by the num-
ber of intentional messages to get the peak hallucination
density, HPD, we have

HPD =
HH

M
= µ

[
1− (2µ)d

1− 2µ

] [
1

1− (2µ)dµ(s+d)

]
(10)

The denominator of the first fraction divides the numerator
and is thus a removable singularity. Hence the critical
density is governed by the denominator of the second
fraction, yielding a critical density of

µc = 0.5[d

s+d] = 0.5

[
1

1+ s
d

]
(11)

Solving for the ratio of clamping bits to fragment bits as a
function of the desired critical packet density, we have

s

d
=

log(0.5)
log(µc)

− 1 (12)

As Figure 3 shows, it is possible to drive the critical
packet density to arbitrarily high values, although the
number of clamping bits quickly becomes unreasonable.
However, experiments using 128 clamping bits between
each data bit (µc = 99.46%) have shown that even decoding
packets with a mark density of 99% is remarkably fast and
efficient.

Fig. 3. Critical density performance of an enhanced BBC-codec.

Fig. 4. Hallucination workload of an enhanced BBC-codec.

Figure 4 shows that an enhanced BBC codec performs in
very close agreement with predictions. Note that unrealisti-
cally short messages (32-bits of data) were chosen only to
clearly show the oscillatory behavior of the workload while
displaying an entire decoding chain. Despite having over
five hundred terminal checksum bits, the predicted realized
hallucination rate of 1.25% is in close agreement with the
zero to six such hallucinations observed over many trial
runs.

XII. PRACTICAL USES FOR INTERSTITIAL CHECKSUM

BITS

While decoding signals from packets having nearly 100%
mark densities sounds impressive, it is unlikely to prove
useful in practice. Most metrics of jammer strength involve
the ratio of average jamming signal power to average
legitimate signal power at the receiving antenna. Where that
is the relevant metric, extended critical mark densities are
detrimental because of disproportionately higher legitimate

7

Fig. 5. Impact of Interstitial Checksum Bits on Decoder Workload.

transmitted signal energy. For instance, an unenhanced
codec with an expansion factor of 1000 requires an attacker
to expend approximately 500 times the energy to bring the
packet to critical density. A single interstitial checksum bit
per data bit may raise the critical mark density to nearly
71%, but the attacker now only has to expend approximately
350 times the sender’s energy to reach that level. At a
critical mark density of 99%, this is reduced to a mere
factor of fourteen.

Energy-limited jammers, perhaps remotely-deployed and
battery-powered, might conceivably be able to raise the
packet density above 50% but lack the ability to jam
continuously and drive it to 100%. The use of interstitial
checksum bits to achieve high critical mark densities might
bear fruit in this rather unlikely situation.

While the use of interstitial checksum bits is difficult to
justify based on exploiting the increased critical mark den-
sity, the existence of a region having lower total workload
per data bit provides some incentive for operating the codec
with a light load of interstitial checksum bits. As Figure 5
shows, with one checksum bit before each four data bits
(the solid line) the negative impact at low packet densities is
limited to about 10% while workload is actually decreased
for packet densities above 25% thus yielding a processing
gain above this level. At the same time, only 10% of the
jam-resistance is sacrificed because the critical mark density
is improved to about 57% requiring the attacker to still
expend about 450 times the energy to jam the channel (for
the example used previously).

XIII. RESULTS USING SOFTWARE-DEFINED RADIO

In addition to operating the codecs with computer-
simulated packet data, experiments have been performed
in hardware using software defined radios. While the data

obtained thus far is limited, the observed impact on perfor-
mance appears to match predictions quite closely.

XIV. CONCLUSION

While interstitial checksum bits allow the critical mark
density of a concurrent codec to be pushed to arbitrarily
high levels, and while this ability is quite interesting from
an academic perspective, its utility in practical systems is
questionable because the gain in absolute jam-resistance is
more than offset by the increase in self-jamming. However,
despite the increase in codeword mark density, the unex-
pected appearance of a region in which codec workload is
actually decreased (in absolute terms) offers the ability to
improve the processing gain in ways that may find practical
application.

XV. ACKNOWLEDGEMENTS

This work was sponsored in part by the Air Force
Information Operations Center (AFOIC), Lackland AFB,
TX, and was performed principally at the Academy Center
for Cyberspace Research (ACCR) at the United States Air
Force Academy.

REFERENCES

[1] L. Baird, W. Bahn, and M. Collins, “Jam-resistant communication
without shared secrets through the use of concurrent codes,” United
States Air Force Academy, Tech. Rep. USAFA-TR-2007-01, 2007.

[2] L. Baird, W. Bahn, M. Collins, M. Carlisle, and S. Butler, “Key-
less jam resistance,” in Proc. 8th Annual IEEE SMC Information
Assurance Workshop (IAW), jun 2007, pp. 143–150.

[3] W. Kautz and R. Singleton, “Nonrandom binary superimposed
codes,” IEEE Transactions on Information Theory, pp. 363–377,
1964.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
Jul. 1970.

[5] G. Cormode and S. Muthukrishnan, “What’s hot and what’s
not: Tracking most frequent items dynamically,” in Proceedings
of ACM Principles of Database Systems, 2003, pp. 296–306.
[Online]. Available: ”http://acm.org/sigmod/pods/proc03/online/210-
cormode.pdf”

8

