
HARDWARE-CENTRIC IMPLEMENTATION CONSIDERATIONS FOR BBC-BASED
CONCURRENT CODECS

William L. Bahn
Leemon C. Baird III

United States Air Force Academy

Abstract— The present trend in communications technology
is toward greater reliance on software-defined radios and a
lessening dependence on dedicated hardware components. How-
ever, in general, dedicated hardware components will likely
maintain a significant edge in processing capability. Thus, for
high-performance systems, it is worth considering the advantages
and disadvantages associated with both full-custom and firmware-
defined hardware architectures alongside software-defined ones.
This paper briefly considers some of issues associated with
both full-custom application specific integrated circuit (ASIC)
approaches as well as more generic programmable logic options
such as field programmable gate arrays (FPGAs) and digital
signal processors (DSPs) in the implementation of BBC-based
concurrent codecs.

I. OVERVIEW

The new field of coding theory, concurrent coding theory,
is steadily building a solid theoretical foundation [1], [2],
[3] and issues of practical significance such as dealing
with jitter and oscillator mismatch [4] and extending the
critical density limits [5] have been explored, both from
a theoretical perspective as well as in simulation and hard-
ware demonstration using software defined radios. It is now
appropriate to begin considering practical implementation
issues including some of the options that are available to
system designers and how the peculiarities associated with a
BBC-concurrent codec might influence the resulting design
decisions.

This paper is not an in-depth examination of any of the
options discussed. Instead, it is intended to cover a broad
spectrum of options and issues with, as a result, very broad
brush strokes. The goal is to establish a somewhat holistic
framework so that future work on specific issues is less
likely to be performed in a vacuum with absolutely no
awareness of the multitude of other issues. Without this
framework, it is likely that much work will be performed
that has little chance of surviving subsequent integration
into a final system.

II. SOFTWARE-, HARDWARE-, AND

FIRMWARE-DEFINED SYSTEMS

For a number of years a major trend in communications
technology has been the drive toward greater reliance on
software-defined radio architectures. A ”software-defined
radio“, or SDR, is simply one in which much of the signal
processing traditionally performed by dedicated hardware
components are performed by software processing blocks
instead. In the extreme case, a transmitter would consist
of little more than a digital-to-analog converter (DAC)
driving an antenna, perhaps through an wideband power
amplifier. On the other end, a receiver would be little
more than a wideband low-noise amplifier (LNA) taking
the signal from an antenna and feeding it to an analog-to-
digital converter (ADC). Everything else, including mod-
ulation and demodulation, would be performed digitally.
Although some software-defined radios operate exactly this
way, particularly in the HF radio bands, most SDRs are
a compromise with software processing blocks performing
baseband and perhaps intermediate-frequency (IF) process-
ing and more traditional (or at least more rigidly-defined)
hardware blocks performing final modulation and demod-
ulation and/or up- and down-conversion to and from the
carrier frequency.

Software defined radios bring to the table extreme flexi-
bility and upgradability since their behavior can be largely,
if not entirely, altered simply by changing the software
running on them. This permits, for instance, radios to
be upgraded to conform to waveforms defined after the
radio was already in the field. It also permits a radio’s
performance to be enhanced without requiring hardware
modifications. For instance, a bandpass filter that is found
to give unacceptable performance in a given operating
environment can be easily replaced by a better one, as long
as the processor remains capable of running the upgraded
software.

However, it would be a mistake to conclude that software-
defined elements are always the route to take. Indeed,
that they are an alternative at all has been made possible



primarily by the tremendous growth in digital processing
power and speed over the last couple of decades. However,
in some respects this is basically equivalent to saying
that software processing capabilities are finally becoming
”good enough“ to take the place of the more costly and
less flexible hardware components that have been ”good
enough“ for decades and which, like the processors they
are now competing with, have continued to improve over
that same time period.

Not surprisingly, it will always be the case that whatever
a software-defined component can do, a dedicated hardware
component can be built to do it faster, better, and – in
sufficiently large production – cheaper. As a result, as long
as there are applications that are pushing the state of the
art in communications technology, there will always be a
place for dedicated communications hardware. But while a
hardware implementation may take months or even years
to successfully implement, a software-defined solution can
frequently be implemented in days if not hours.

Sitting somewhere between hardware-defined and
software-defined implementations are firmware-defined
ones. A firmware-defined solution, in this context, is
one that relies on the configuration of programmable
logic devices to define the logical behaviors of the
hardware. For our purposes, a program that is stored in
an embedded processor is still a software-defined system.
Having said that, it is inescapable fact that the distinctions
between hardware, firmware, and software are becoming
increasingly blurred.

For clarity and brevity, the remainder of this paper
will use “hardware-centric” and “hardware-defined” to refer
collectively and generally both to full custom hardware
approaches and programmable logic approaches. Where the
former are being referred to specifically, terms such as “full-
custom” or ASIC will be used. Where the latter is being
singled out, terms such as “programmable logic” or FPGA
will be sued.

III. PROCESSING BOTTLENECKS IN CONCURRENT

CODECS

The advent of concurrent coding theory and it’s appli-
cation to jam-resistant communications [1] is a case in
point where a new technology may not be practical to
implement using today’s SDR capabilities (although that
is far from certain at this point) but may, at least initially,
need to leverage the capabilities offered by hardware-centric
solutions.

The processing bottleneck of a concurrent codec will
almost certainly be the packet decoder. This is both due

to the nature of the encoding and decoding algorithms and
also because this, by design, is the element that an adversary
is going to need to overwhelm. Hence the packet decoder
must be highly optimized since it’s ability to keep pace with
the decoding workload will, in practice, define the realizable
processing gain of the system.

The key feature of a concurrent codec that lends itself
to hardware- centric architectures is the fundamentally
parallelizable nature of the decoding algorithm. The most
obvious such feature is the tree-nature of the decoding path.
In a sequential processor, each time a tree branches one
branch is pursued while the other branch is placed on hold.
However, in a hardware-centric solution, multiple decoder
cores could be implemented and placed in a resource pool
such that each time a branch is encountered, the new branch
is spawned off to one of the available decoders, which
then proceeds concurrently and independently to decode the
new branch. When a branch dies, that decoder is released
and returned to the pool of available decoders. While this
is conceptually similar to a normal sequential processor
spawning threads, it must be kept in mind that those threads
do not truly run concurrently but rather time share the
processor (or processors in the case of multi-core chips). In
a hardware-centric solution, it is possible to have as many
decoder cores as the cost and other constraints dictate and
that number could easily be in the dozens or even in the
hundreds (with thousands not an unthinkable number).

One detail that must be considered is how the situation is
handled when a branch is reached and no available decoders
are in the resource pool. In order to prevent the decoder
from locking up at this point, each decoder should have
the capacity to continue performing a depth-first search
on its assigned branch using the single-processor approach
without spawning new branches to the decoder pool. This,
in turn, begs the question of whether a decoder that has
switched to this mode should be capable to switching back
to using the decoder pool once decoders are again avail-
able. While the answer is ideally yes, doing so introduces
additional bookkeeping overhead since now each decoder
must keep track of which branches were spawned and which
weren’t. While this can be done with a single status bit per
message bit per decoder. the total number of memory bits
grows quickly.

In comparison, if a given decoder starts in a cooperative
mode (meaning that it will spawn new branches to the
decoder pool) and then (possibly) switches to and stays
in an independent mode later (meaning that it will process
branches internally), then it only needs to keep track of the

2



depth at which it was invoked and the depth at which it
switched modes. Conceptually it would be possible to use
a ”mode stack“ to keep track of subsequent switches in and
out of these modes, but eventually the possibility exists that
these registers will be exhausted and that the decoder must
then branch internally from that point on, even if all of the
other decoders have finished their work and are available.

Since the goal is unkeyed jam-resistance, it must be as-
sumed that any adversary will have access to the decoder’s
architecture and firmware and will attempt to exploit that
knowledge to develop effective attacks. In this case, it is
important that the attacker not be able to easily force a
situation where, due to the above behavior, a packet is
reduced to using only a small number of available decoders.
In order to create this situation, the attacker would need only
to construct a packet that rapidly branches, thus exhausting
the decoder pool, and then steers one branch to exhaust its
mode stack thereby locking it into an independent mode.
At this point the other branches can be allowed to expire.
Constructing such a packet may or may not be trivial. One
possible way to defeat this attack is to add a stochastic
component to the mix whereby decoders have a finite
probability of opting not to spawn a branch even if a
decoder is available in the pool. An alternative would be
to randomly pick which branch in a path is spawned and
which branch is maintained by the present decoder, since
a spawned branch always starts off with a fresh mode
stack. The tactics would greatly increase the difficulty of
constructing an effective attack packet.

IV. MEMORY BOTTLENECKS

In a typical software-defined radio, the memory needed
for all aspects of operation are in a unified memory space.
In a hardware-centric implementation that is exploiting
decoder parallelization the potential for encountering mem-
ory access bottlenecks in such a unified space must be
considered. For instance, each decoder needs to access the
packet contents, possibly at the same location at the same
time. In addition, each decoder needs to access memory
in order to compute the next message-prefix hash as well
as maintain and update its state variables. Fortunately, a
hardware-centric implementation has the ability to segment
memory resources with a very fine degree of resolution.
For instance, each decoder can maintain local memory
to manage its own state information. Since each memory
segment can be accessed independently and simultaneously,
the associated bottlenecks are eliminated.

In theory, each decoder could receive its own copy of
the packet; however, since practical packet sizes are likely

to be in the hundred kilobit to perhaps gigabit range, this
will likely be prohibitive. However, while this bottleneck
may prove to be the limiting factor in determining decoder
performance, the fact that each decoder must compute
message prefix hashes at each stage of decoding means that
a significant amount of time is available between necessary
packet data queries for a given decoder. Thus it should be
possible to use a standard memory access queue to service
all of the needs for access to packet data for a fairly large
number of decoders before this bottleneck begins affecting
performance.

Should, however, packet data access prove to be a lim-
iting bottleneck, it can be greatly alleviated by segmenting
the packet into subpackets, each with its own access queue.
The degree of segmentation possible depends on whether
the packet data is stored in standard memory chips or
internally within the processing device. If stored externally,
then I/O pin count limitations can quickly come into play.
However, modern FPGA’s can have as much as 10 megabits
of internal block RAM – and this number will only increase
as time goes by – while fully custom ASICs can have as
much as the designer is willing to pay for. It should be
noted, however, that placing large amounts of memory on
a CMOS processor is quite expensive compared to using a
separate DRAM chip.

One ”trick” that can be leveraged if DRAM is imple-
mented on-chip is that there should be no need to perform
memory refresh cycles. Since each memory location will
be written two each time the packet advances, which
will happen at the codeword baudrate (or perhaps some
reasonably small multiple of that period), the memory will
automatically be refreshed with each advance.

V. HASH FUNCTION GENERATOR

As mentioned previously, each decoder must make reg-
ular calls to a hash function to compute mark locations.
Depending on the details of the algorithm, this might entail
multiple calls per message bit. In a typical CPU-based SDR,
a hash function call is a relatively expensive processing step.
However, a hardware-centric design can implement a hash
function block that can compute the output very quickly and
efficiently and it is entirely reasonable to dedicate a block
to each decoder and configure the logic to pre-compute the
next potential hash outputs at the same time that the decoder
is querying the results from the previous hash to determine
which path, if any, to follow.

Also, the BBC-algorithms do not require cryptographi-
cally secure hash functions. Research to date indicates that
linear feedback shift registers (LFSR) having sufficiently

3



long internal state are adequate. One promising approach is
to use a novel LFSR architecture that permits branching
in response to the state of a message bit as well as
being able to run backwards to “unwind” up the decoding
tree. If this approach proves workable then hardware-based
implementations can leverage the rich selection of fast and
efficient LFSR optimizations available.

VI. JITTER AND OSCILLATOR MISMATCH

COMPENSATION

Concurrent codecs are highly tolerant of signal jitter and
mismatch between transmitting and receiving oscillators.
However, this tolerance comes at the expense of a non-
trivial amount of computational overhead. However, like
the core decoding functions, this overhead lends itself to a
number of parallelization strategies when using a hardware-
centric implementation.

Compensating for signal jitter by way of receiver-side
mark extension can be offloaded to the logic performing
the packet data accessing. In essence, a global parameter
indicating the degree of mark extension is used to automat-
ically query not only the nominal mark location placed in
the access queue by the decoder, but also the appropriate
number of adjacent mark locations. There are number of
ways to accomplish this and which method is best depends
on a number of factors such as how much margin the data
access block has to work with and whether or not the packet
data memory space has been segmented.

Compensating for oscillator mismatch using a traditional
CPU-based SDR involves many multiplications of packet
location indices by the same scaling factor. In a hardware-
centric implementation, the scaling factor can be applied to
one input of a dedicated hardware multiplier and then the
indices applied to the other with the scaled output being
available more-or-less immediately at the output and ready
for use. Furthermore, the process of generating the set of
scaling factors to be used for one packet can be performed
concurrently with other processing, possibly even while the
prior packet is being decoded. An other alternative is to
pre-compute the scaling factors for every possible position
within the compensation window (a number likely to be
between a few tens and a few hundreds) and store them in
a look-up table.

An method offering even greater potential efficiency is
to place a hardware multiplier next to each scale factor
register. This then allows the simultaneous computation of
all of the compensated mark locations. A status bit can
be maintained for each scale factor register. The bit would
initially be set according to the packet contents within the

window and then cleared as marks are not found. Once all
of the status bits are cleared, the decoder knows that no
messages exist within that packet and can move on.

Whether the packets are decoded one scale factor at a
time or simultaneously, the hardware will need to be able
to scan a section of memory (either the packet bits within
the window or the status bits) and move quickly from one
HI bit in the string to the next HI bit. In a traditional CPU
the ability to do this efficiently is very limited. However,
in a hardware-based implementation a token passing and
capture scheme can be used to permit the system to skip
all of the intervening LO bits (within reason) in a single
clock cycle.

VII. CONCLUSION

While concurrent codecs in general, and the BBC algo-
rithms in particular, are easily implemented in a software-
defined radio architecture, the decoding algorithm is re-
source intensive and it’s performance is the limiting factor
in overall receiver performance, particularly in a hostile
environment. To mitigate this vulnerability, the decoder
can be implemented in a hardware-centric architecture
that leverages the inherently parallelizable nature of the
decoding algorithm. This can be achieved either in a semi-
custom FPGA-based implementation or, to an even greater
extent, in a full-custom ASIC implementation.

VIII. ACKNOWLEDGEMENTS

This work was sponsored in part by the Air Force
Information Operations Center (AFOIC), Lackland AFB,
TX, and was performed principally at the Academy Center
for Cyberspace Research (ACCR) at the United States Air
Force Academy.

REFERENCES

[1] L. Baird, W. Bahn, and M. Collins, “Jam-resistant communication
without shared secrets through the use of concurrent codes,” United
States Air Force Academy, Tech. Rep. USAFA-TR-2007-01, 2007.

[2] L. Baird, W. Bahn, M. Collins, M. Carlisle, and S. Butler, “Key-
less jam resistance,” in Proc. 8th Annual IEEE SMC Information
Assurance Workshop (IAW), jun 2007, pp. 143–150.

[3] W. Bahn, L. Baird, and M. Collins, “Jam-resistant communications
without shared secrets,” in Proc. 3rd International Conference on
Information Warfare and Security (ICIW08), apr 2008, p. (CD).

[4] ——, “Oscillator mismatch and jitter compensation in concur-
rent codecs,” in Unclassified Proc. IEEE Military Communications
Conference (MILCOM:08), nov 2008, p. (CD).

[5] W. Bahn and L. Baird, “Extending critical mark densities in con-
current codecs through the use of interstitial checksum bits,” United
States Air Force Academy, Tech. Rep. USAFA-TR-2008-XX, 2008.

4


