
OSCILLATOR MISMATCH AND JITTER COMPENSATION IN CONCURRENT CODECS

William L. Bahn
Leemon C. Baird III

United States Air Force Academy
Michael D. Collins

Department of Defense

Abstract— The advent of concurrent coding theory means that
omnidirectional communication systems can possess a level of keyless
jam-resistance comparable to that of traditional spread spectrum
systems, all of which rely on shared secret keys. To achieve this,
concurrent codecs possess the ability to efficiently separate multiple
legitimate codewords that have been superimposed. This is achieved
by leveraging a highly asymmetric sensitivity to bit errors and,
consequently, a reliance on communication channels having corre-
spondingly high degrees of asymmetry in their bit error probabilities.
While suitable physical channels must possess inherently high degrees
of asymmetry, this asymmetry can be artificially enhanced using post
processing techniques with the effect that system designers can trade
small amounts of jam-resistance for increases in noise immunity.
Furthermore, to rob potential adversaries of the option of attacking
the receiver’s ability to synchronize with the transmitted signal,
concurrent codecs do not perform real-time adaptive synchronization
and instead use asynchronous protocols. To avoid bit misalignments
over the length of the packet, such protocols normally require that
transmitters and receivers have oscillators with frequency tolerances
on the order of one part in ten times the packet length. However, a
concurrent codec can use simple post-processing techniques to exploit
the asymmetry in bit error sensitivity to give receivers high degrees
of immunity to timing jitter as well as high tolerances to oscillator
mismatch. This has implications not only for processing gain, but
also for implementation cost since transceivers can utilize oscillators
having greatly relaxed specifications compared to that required by
traditional systems. This paper presents these techniques and analyzes
their impact on jam-resistance and oscillator performance require-
ments.

I. THE NEED FOR KEYLESS JAM-RESISTANCE

Wireless networks operating in hostile environments require
high degrees of jam-resistance to ensure the availability of
network resources. The two traditional means of providing this
are highly-directional links and spread spectrum. The exclusive
use of directional links in highly dynamic mobile ad hoc
networks poses practical challenges that virtually guarantee that
omnidirectional links will continue to play a significant role
in such networks. However, spread spectrum techniques are
only as secure as the shared-secrets (i.e., symmetric keys) upon
which their jam-resistance is based; this, in turn, is limited by
the classic key distribution problem associated with such keys.
Therefore a means is needed of ensuring the availability of the

0U.S. Government work not protected by U.S. copyright.

channel in large omnidirectional wireless networks that does
not rely on symmetric keys.

A seemingly obvious alternative are asymmetric keys since
ways of using them to ensure the other classic security goals
(i.e., confidentiality, integrity, and authenticity) are well under-
stood. Unfortunately, these all assume and require that data
can be successfully exchanged between parties, implying that
the communications channel is already available. Consequently,
a means in needed of ensuring channel availability in large
omnidirectional wireless networks that does not rely on secret
keys at all.

This same conclusion can be reached independently by
considering a different category of application altogether –
namely public-access systems. One example is civilian GPS
where communications are one-way and where the pool of
authorized users is literally every person on the planet. In this
case, secret keys of any kind are precluded since, by definition,
hostile parties are authorized users with access to the same keys
as everyone else.

For an unkeyed system – a system with no secret keys – to
be jam-resistant, it must be capable of dealing with multiple
overlapping transmissions of legitimate waveforms: some from
friendly sources and some from hostile sources. This problem is
closely related to the field of superimposed codes; historically,
such codes have been limited to applications in which member-
ship testing is sufficient since, until recently, no efficient means
of fully decoding a superimposed transmission has existed. This
situation changed fundamentally with the advent of concurrent
codes; by definition, these are superimposed codes that can
be efficiently decoded. In fact, although only one realized
construction of a practical concurrent code presently exists, its
decoding complexity is linear-time with respect to the product
of the length and number of transmitted messages.

II. A BRIEF REVIEW OF CONCURRENT CODING THEORY

A detailed explanation of concurrent coding theory is avail-
able in [1] and [2] – only a brief summary is provided here.
Concurrent codes rest on the decades-old foundation of super-
imposed codes[3], of which Bloom filters[4] are an example.
The heart of a superimposed code is an encoding algorithm
whereby a packet containing several different messages can
be constructed by performing a bitwise-OR of the codewords

corresponding to the chosen messages. Going the other way, a
packet is considered to contain a particular message if it covers
that message, meaning that all of the marks (i.e., bits whose
value is HI) in the codeword for that message are contained in
the packet. Ideally, a packet should only cover those messages
used to construct it. In practice, this will only be true up to a
point; if too many messages are placed into a packet then it will
begin covering additional messages. These additional messages
go by a variety of different names; here they are referred to
as hallucinations. In general, parameters in the coding and
decoding (i.e., codec) algorithms permit the user to control,
at least statistically, how many messages can be contained in a
packet before hallucinations start to appear.

Superimposed codes have traditionally found use where it
is sufficient to ask if a particular message, or small set of
messages, is covered by the a given packet. This is done by
performing a “membership test” which involves verifying that
all of the marks in the message being tested are covered by the
packet. Membership tests can be performed very efficiently;
conceptually they involve nothing more than a bitwise-AND
between the codeword and the bitwise complement of the
packet, with any non-zero result declared a failure.

However, if it is necessary to generate a list of all messages
covered by the packet - referred to here as decoding the
packet - then an exhaustive search spanning the entire message
space is generally needed. As recently as 2003, it has been
claimed by at least one researcher [5] that no efficient means
of decoding arbitrary codewords from very large code books
yet exists. Decoding therefore requires an exponential amount
of time as a function of the message length. While acceptable
for applications having a sufficiently small message space
as well as sufficient time and processing power to perform
the work, it is totally infeasible given the message spaces,
processing capabilities, and time constraints found in typical
communication systems.

Thus, for communication systems, a subset of superimposed
codes is needed in which the entire list of messages can
be extracted from a packet in an “efficient” manner. This
requirement is the defining characteristic of a concurrent code
compared to the broader set of superimposed codes.

III. A REVIEW OF THE BBC ENCODING AND DECODING

ALGORITHMS

The BBC algorithms are a pair of algorithms that encode
and decode data to and from concurrent message packets. Like
concurrent coding theory itself, extensive details about them
and their behavior are now in the open literature[1], [2] and only
a brief description is provided here. The underlying basis for
the BBC algorithms is that m-bits of data are first transformed
into a message which is then encoded, one bit at a time, using
progressively longer prefixes to construct a c-bit codeword. This
allows for the efficient decoding of the packet since messages

can be recovered one bit at a time by looking for progressively
longer message prefixes. Finally, the data can be extracted from
the recovered message.

The BBC encoding algorithm is given in Algorithm 1.

Algorithm 1 BBC Encode(D)

This function takes m-bits of data, pads it with k checksum
bits at locations specified by the protocol in use to produce
the message M , and then places marks in the codeword P at
locations determined by hashes of all possible prefixes of the
padded message. In addition, “bookend” marks are placed
in the packet at the first and last locations

M = D with k spaces added as specified by the protocol.
P ← 0 (i.e., P is a c-bit vector initialized to all spaces)
Place bookend marks in the packet.
for (n← 1 . . .m+ k (m+ k = length(M))) do

Compute L = Hash(M [1 . . . n]) such that 1 ≤ L ≤ c
Place a mark in P at location L

end for
return P

NOTES:
1) M [1 . . . n] is the n-bit prefix of M .
2) 1 ≤ Hash(X) ≤ c.

In practice, decoding a packet is most efficiently done using
a depth-first search of the message space; however, it is easiest
to describe in terms of a breadth first search, as depicted in
Algorithm 2.

The dominant parameter in the algorithm is the expansion
factor, e, which is the ratio of the length of the codeword,
c, to the length of the original data, m (i.e., c = me). The
expansion factor determines how the output of the hash function
is interpreted; specifically, it is interpreted as being one of the
c possible locations in the codeword. The expansion factor is
roughly equivalent to the processing gain of a traditional spread
spectrum system, both in terms of bandwidth spreading and in
terms of the degree of jam-resistance.

The role of the checksum bits is to kill hallucinations. They
do this by inserting k marks into the codeword at locations
that are functions of the entire message. Since the decoder
knows a priori the value of all checksum bits, the list of covered
prefixes cannot grow when decoding such a bit. Furthermore,
hallucinations in the list survive the decoding of a checksum bit
purely by chance. In general, the fraction of hallucinations that
survive each checksum bit is equal to the packet’s mark density,
hence checksum bits exterminate hallucinations exponentially.

One important point to note about concurrent codes – and
true of all superimposed codes – is that any one codeword
is relatively sparse, consisting almost entirely of spaces with

2

Algorithm 2 BBC Decode(P)

Whenever a possible packet is identified, based on finding
a pair of “bookend” marks, then all of the data in the
packet is extracted by first identifying all messages covered
by the packet and then extracting the data from each covered
message. At any given stage of the process, a list of message
prefixes that are covered by the packet is maintained. The
prefixes are lengthened one bit at a time and only those still
covered are retained. If the next message bit is a checksum
bit, then the prefix extended with a ‘0’ bit is considered.
However, if the next message is a data bit then the prefix
extended with a ‘1’ bit is also considered.

if Bookend marks are found (marks at first and last bit
position) then
M ← {} (i.e., M is an empty message list)
for (n← 1 . . . (m+ k)) do

Expand partial messages in list to n-bits
for (Each partial message, Mj , in M) do

Remove Mj from list M
Add Mj : 0 to list M (i.e., append a ‘0’)
if n corresponds to a data bit then

Add Mj : 1 to list M (i.e., append a ‘1’)
end if

end for
Prune messages from list
for (Each partial message, Mj , in M) do

Compute L = Hash(Mj)
if P does not contain a mark at location L then

Remove Mj from list M
end if

end for
end for

end if
Extract the data from the messages
for (Each message, Mj , in M) do

Strip all checksum bits from Mj

end for

a few pseudorandomly scattered marks. The fraction of a
codeword (or packet), that consists of marks is referred to as
the mark density; this plays a key role in determining decoder
performance.

IV. THE PHYSICAL OR-CHANNEL

Concurrent codes, like their superimposed brethren, require
an OR-channel if they are to retain necessary properties. An
OR-channel is one in which all of the codewords present in
a channel are combined via a bitwise-OR operation. From a
practical standpoint, this means that the receiver should produce
a mark whenever any of the transmitters are broadcasting

a mark and should produce a space only when all of the
transmitters are broadcasting a space. This is difficult to achieve
with most modern binary modulation schemes because they
are designed to produce symmetric channels having nearly
identical bit error probabilities, regardless of whether a mark
or space is transmitted, as this minimizes the overall bit error
rate (BER). However, by using a highly asymmetric channel,
such as old-fashioned On-Off Keying (OOK), an OR-channel
can be implemented with a high degree of fidelity by setting
the detection threshold sufficiently low. Since such a channel is
not symmetric, it cannot be characterized by a single error rate.
Instead, it has a mark error rate (MER) and a space error rate
(SER). The MER is the probability that a space will be received
even though one or more marks were transmitted and the SER
is the probability that a mark will be received even though
no marks were transmitted. In general, lowering the detection
threshold will lower the MER at the expense of raising the
SER.

V. JAM-RESISTANT NATURE OF CONCURRENT CODES IN

AND OR-CHANNEL

We can now discuss how concurrent codecs provide high
degrees of assurance that the channel will remain available
even in the presence of considerable hostile jamming. If a
sender transmits a message that is encoded with a concurrent
codec, then as long as all transmitted narks are received, the
message will be contained in the list of messages produced
by the receiving codec. By contrast, successful reception of
all spaces is not necessary; in fact, a significant fraction can
be received erroneously without significant impact on decoder
performance. The attacker thus has two options available to
them: (1) they can try to force the receiver to make a mark
error, or (2) they can try to flood the receiver with space errors
(false marks).

The first option, while highly attractive since the decoder
is extremely sensitive to mark errors, is not very practical
because once the sender transmits energy into the spectrum,
the attacker cannot easily remove that energy; they can add
to it or corrupt it, but they cannot easily diminish it in any
practically meaningful sense. The receiver, on the other hand,
is not relying on being able to extract any information from
the energy that was transmitted beyond the mere detection of
its existence. If the receiver’s detection threshold is sufficiently
low, detection is virtually guaranteed. Furthermore, promising
methods of tolerating modest mark error rates are presently
being explored.

This leaves the second option which, while not particularly
attractive since the decoder is highly insensitive to space errors,
is never-the-less always possible. The hostile party can force
a sufficiently high SER placing the packet beyond the codec’s
ability to decode with available resources. However, doing so
requires the attacker to expend considerably more energy, all

3

else being equal, than the genuine sender did thus exposing
them to the network defenders. In order to successfully jam
the channel the attacker must accept a commensurate level of
risk. If that risk can be made unacceptable then the channel
will most likely remain available.

It should be emphasized that concurrent codecs promise
neither jam-proof communications nor a level of jam-resistance
greater than that of uncompromised spread spectrum. What
concurrent codecs provide is a comparable level of jam-
resistance without the need for symmetric keys and the cor-
responding key management nightmare. Thus, from a practical
perspective, concurrent codes can be viewed not as a means
of improving jam-resistance, but as a tool for improving key
management.

VI. ATTACK MODEL AND CODEC CONFIGURATION FOR

THIS DISCUSSION

As with traditional spread spectrum systems, the jam-
resistant properties of a concurrent codec can be tailored by
choosing various parameters accordingly to the threat model
in use. For the purposes of this discussion, we will assume a
threat model that permits the attacker to drive the packet mark
density as high as 33% before attracting unacceptably high
levels of interest from the network defenders. At this density
the receiver workload is doubled, meaning that it must process
one hallucination for every intentional message in the channel.

Somewhat arbitrarily – and except as indicated otherwise
– we will assume that the codec being considered has been
configured so that each message contains 1000 bits of data
appended with 32 checksum bits. We will further assume that
the codec has an expansion ratio of 1000, meaning that each
codeword is one million bits long. Note that this is not a hypo-
thetical configuration, it is one of the configurations frequently
used in the present software-defined radio RF demonstrator.
This system will be discussed in more detail later.

With this attack model and codec configuration, the attacker
needs to transmit approximately 320 times the energy (25dB)
as the legitimate sender to reach their risk limit. Owing to
collisions in the hash function, they can transmit, on average,
almost 400 randomly chosen attack messages. Due to the
combined impact of the attack messages and the hallucinations
they create, this will force about 800 times the computational
workload on the receiver compared to if there were no attack.

VII. OSCILLATOR REQUIREMENTS IN TRULY

ASYNCHRONOUS PROTOCOLS

An asynchronous communications protocol is generally con-
sidered to be one in which any timing information needed
to receive and decode the signal is embedded in the signal
itself, as opposed to having a separate synchronizing signal.
Most modern asynchronous protocols embed sufficient timing
information to permit the receiver to detect the transmitter’s

clock rate and to adjust its own reception clock to match. Many
such embedded-clock schemes exist, most of which use coding
algorithms that result in edge-rich symbols. These edges are
easy for the receiver to detect and are, for example, used to
control a phase-locked loop (PLL) so that the receiver’s clock
is kept in tight synchronization with the clock used to transmit
the data.

Unfortunately, having the receiver use the received signal to
control its own oscillator provides an obvious target for hostile
parties wishing to disrupt the communications link; if they can
interfere with the synchronization process, which may only
require a relatively small amount of transmitted energy, then
they can jam the channel. This vulnerability can be removed
if a truly asynchronous system is used in which the receiver’s
oscillator is free running and no attempt is made to servo it
to the transmitter. An example where this is typically the case
is RS-232; in this protocol the only timing information that is
transmitted is the start of the packet. The receiver attempts to
detect this packet start and, once detected, relies on its oscillator
being sufficiently matched to that of the transmitter to allow it
to capture the symbols properly over the course of the packet.

Since both the transmitter and receiver oscillators are free
running and no attempt is made to servo the latter to the former,
they must be sufficiently close to each other naturally to prevent
framing errors. A framing error occurs when, among other
causes, the accumulated mismatch between the two oscillators
is sufficient to cause the receiver to be misaligned with the
transmitted signal. A useful rule of thumb is that the accuracy of
the two oscillators must be at least an order of magnitude better
than one part in the length of the packet. For instance, in RS-
232 where packets rarely exceed a dozen bits, oscillators whose
accuracy is on the order of 1% are needed. With typical crystal
oscillators exceeding this by a couple orders of magnitude, this
is rarely a concern for RS-232 communication links. However,
if the packet length is to be a million bits, as is the case with
the codec being discussed, then oscillators with accuracies on
the order of 0.1ppm (10−7) are needed. While such oscillators
exist – state of the art is about 10−10 – they are expensive
and frequently difficult to incorporate into designs suitable for
harsh field conditions.

Anecdotal proof that concurrent codecs enable truly asyn-
chronous communications using oscillators having tolerances a
few orders of magnitude worse that what would be expected is
borne out by the fact that one million bit packets are being
successfully used in an RF demonstrator having oscillators
rated at 100ppm. From a crude perspective, this means that
by the time the receiver reaches the end of the packet it would
not be surprising for the misalignment to exceed well over one
hundred bit positions. While actual experience shows that the
misalignment seldom exceeds fifty bit positions, even this is
two orders of magnitude greater than the half-a-bit needed to
cause, with highly likelihood, a framing error.

4

None-the-less, the RF demonstrator has proven to be very
robust despite the relatively high oscillator mismatch because
the receiving codec performs both oscillator mismatch and jitter
compensation. This is possible because of the high asymmetry
in the sensitivities to mark and space errors; just as the jammer
can force a large number of space errors before having a
significant impact on the receiver’s workload, the decoding
algorithm has wide latitude in assuming where mark errors exist
while maintaining a similarly benign impact.

VIII. THE DEMONSTRATION PLATFORMS

Two platforms were used to examine oscillator mismatch
and jitter effects and to develop compensation strategies. The
first was an audio demonstrator whose physical layer used the
internal microphone and sound cards in laptop computers. The
second was an RF demonstrator using software defined radios
(SDR) for the physical layer. In both cases the encoded packet
was transmitted using OOK (On-Off Keying) of a pure tone
(a.k.a., CW).

For the audio demonstrator, a typical configuration involved
128 bits of data and 32 checksum bits encoded into a 6,400 bit
codeword (expansion factor of 50). The packet was transmitted
from the laptop’s speaker at 1,000 baud using a 4.4 kHz
sinewave. The receiving laptop sampled its microphone at
11.025 kSa/s.

For the RF demonstrator, a typical configuration was 1,000
bits of data and 32 checksum bits encoded into a 1,000,000 bit
packet (expansion factor of 1,000). The packet was transmitted
at one megabaud using an unoccupied region of the 915MHz or
2.45GHz ISM bands. After down-converting from the carrier,
the receiver sampled the baseband signal at 4MSa/s.

With either demonstrator, three platforms were generally
used: two transmitters and one receiver. One transmitter was
”genuine“ sender and generally sent packets containing one
or, at most, a few messages. The second transmitter was the
”jammer“ and generally sent packets containing many messages
and/or random pulses. The jammer, when used, was always at
least as close to the receiver as the legitimate sender – typically
midway between them – and broadcasting at least as strong a
signal as the genuine sender.

Even though the audio demonstrator’s received digitized
waveform was the complete signal at the carrier frequency
while the RF demonstrator’s waveform was a baseband signal,
both platforms used identical signal processing chains on
the received waveform. The first step employed a software
radiometer. The signal was squared to produce a signal pro-
portional to the instantaneous power and then low-pass filtered
using a first-order infinite-impulse-response (IIR) filter. The
filter output was converted to a binary signal using a software
Schmidt-trigger discriminator. The signal at this point, which
was still at the sampled signal rate, was decimated to produce
the data stream sent to the decoder using a retriggerable one-

shot whose output was sampled at the baud rate. In order to
improve the real-time performance of the codec, all of the above
steps were integrated into a single tight processing loop termed
a decimating radiometric discriminator.

The decoder was presented with a continuous binary data
stream at the baud rate. Every mark in the stream was presumed
to be the leading mark of a packet. If, in fact, there was no
packet starting at that point, then the decoding tree dies almost
immediately. Hence there is a small, but non-zero, decoding
overhead associated with any non-zero packet mark density.

IX. JITTER COMPENSATION

A number of error sources exist that can, at least informally,
be lumped together as being equivalent to timing-jitter. There
is, of course, actual edge jitter in both the transmitting and re-
ceiving oscillators and circuitry. Furthermore, particularly if the
receiver is radiometer based, there are time-walk issues. Time-
walk occurs because the exact time at which the discriminator
threshold is crossed depends on the amount (and the profile) of
energy in the signal. Pulses with just enough energy to cross
the discriminator’s threshold will generally result in a delayed
response going high and a quicker response going low than
pulses with greater energy. At least for the rising edge, this can
be greatly alleviated by using more sophisticated circuits such
as constant-fraction discriminators. However, for simplicity, we
will assume that such techniques are not being used and that,
in general, the discriminator output suffers energy-dependent
time-walk. In general, we will assume that there is always some
uncertainty about whether a detected mark is actually in the
proper bit position.

Traditionally, combating jitter via coding is difficult since
correcting one error is likely to create another. However, con-
current codecs tolerate jitter extremely well because of the very
high asymmetry in bit error sensitivities. As a result, techniques
that reduce the likelihood of experiencing a mark error can be
effectively utilized even if they produce significant space errors.
Two techniques are presented here: mark extension and decoder
windowing. Both perform essentially the same task, but how
they do it – and the advantages and disadvantages of each –
are different.

Mark extension refers to actually increasing the length of
the marks in the radiometer output. This can be done in the
transmitter and/or the receiver. The transmitter can simply
increase the duration of each mark it transmits. Alternatively,
the encoder may place marks at J adjacent locations in the
codeword starting with the nominal single-mark location. To
date, experiments with the audio demonstrator have never
needed a value of J greater than four while the RF demonstrator
has never shown any benefit from any J greater than two. The
receiver can extend the marks by slowing the recovery time of
the radiometer or by extending the length of the one-shot. The
principal advantage of transmitter-side mark extension is that

5

only the transmitter’s marks are extended; marks due to noise
or to the attacker are not. Conversely, if the receiver extends the
marks there is a significantly greater impact on jam-resistance
since all of the marks, regardless of source, are extended. The
main disadvantage of transmitter-side mark extension is that
the transmitter must know how wide to make the marks. Purely
receiver-side techniques are preferred, where feasible, to avoid
having to negotiate anti-jamming parameters over a channel
that is being jammed.

Decoder windowing also has the ability to compensate for
jitter by virtually extending the marks in the packet. Conceptu-
ally, this is very similar to how the transmitter extends marks;
namely, if the hash function indicates that a mark should be at a
particular location, then the decoder considers it found as long
as any mark is within a window that extends J bits beyond
the nominal location. Decoder windowing has the advantage of
being easily implemented in hardware, but it lacks the sub-bit
resolution attainable when performed in either the transmitter
or the receiver.

X. OSCILLATOR MISMATCH COMPENSATION

The original technical report[1] assumed that a truly asyn-
chronous protocol would require time bases that were accurate
– or at least relatively precise – to within approximately one
part in ten times the packet length (the common rule-of-thumb).
It also noted that oscillators suitable for small battery powered
devices with accuracies on the order of 1010 existed, at least
in the laboratory.

Subsequent practical experience with the audio demonstrator
has shown that much worse accuracies can be tolerated with
only minor impact on receiver workload. Originally all of
the computers were identical models purchased as part of the
same contract; thus the oscillators use by the sound cards
were probably unrealistically well matched since they were
used in identical circuits and probably came from the same
lot, if not the same silicon. However, eventually one of the
computers was replaced by a different make and model; it was
unable to successfully send or receive packets to the other two
machines. When the transmitted and received waveform files
were examined side-by-side it was discovered that the received
waveform was 41ms shorter than the transmitted waveform.
This implied that the time bases of the two platforms differed
by approximately 0.64% (6400ppm). Using the rule-of-thumb
mentioned earlier, this would limit packet lengths to approx-
imately sixteen bits. However, since the entire packet must
be stored in memory, the highly asymmetric error sensitivities
immediately offered a potential solution.

Though unconventional, an oscillator may be thought of as a
processing block that converts time to cycles, characterized by
a certain transfer function, namely how many cycles it produces
at the output per unit of time supplied at the input. From this
perspective, two mismatched oscillators simply have a relative

Fig. 1. Time-gain error correction example.

gain error in their transfer functions. Because gain errors are
common in many applications (e.g., fixed-pattern noise in solid
state imagers), gain correction is routinely performed. One
common technique is to calibrate the system using a two-point
correction. To do this, two reference signals are measured with
the uncorrected device: one a low level signal and the other
a high level signal. From those two points and their assumed
correct values, gain (and offset, which is not important here)
correction factors can be computed and applied to all of the
data received by that device. This approach is very simple and
works extremely well provided the detector is linear.

Applying a two-point correction to the problem posed by
mismatched oscillators led to the solution of simply embedding
a set of reference signals that could be used to calibrate
a correction coefficient. At the time this problem was first
identified the packet already contained a start-of-packet mark
used for decoder convenience. The addition of an end-of-packet
mark (thus creating a pair of ”bookend“ marks) was the obvious
choice since it placed one reference signal at a low value of time
and the other at a high value. The process used is illustrated in
Figure 1. In this example, after decoding any packets that start
with the second mark from the left, the decoder advances down
the received bit stream until it encounters the next mark. It treats
this as a potential start-of-packet mark and computes where
in the bitstream the end-of-packet mark should be. However,
instead of just looking at that single location, the decoder
considers any mark appearing within a window, centered on
that location, as a potential end-of-packet mark. If N such
marks are found within the window, then the decoder performs
N complete decodes of the bitstream compensating for the
apparent time-gain error associated with each candidate end-
of-packet mark by expanding or compressing the packet as
necessary.

Returning to the case of the new laptop computer for the
audio demonstrator described above, the new version of the
decoder was configured to permit up to ±1% of oscillator
mismatch. As a result, the three platforms immediately began
communicating with each other with no noticeable impact on
performance. (Certainly a performance impact existed, it was
just sufficiently small so as to escape casual notice.)

In the case of the RF demonstrator, the rated oscillator
accuracies of 100ppm (each) would normally limit the packet

6

length to something on the order of 1,000 bits instead of the
1,000,000 bits generally used. Despite this, the receiver worked
well even without any time-gain correction. This was believed
to be the result of two things: (1) The software defined radios
in use were all ordered at the same time and have identical
circuitry and use identical crystal oscillators that likely came
from the same production lot, and (2) the 1-bit wide jitter
compensation in use was sufficient to compensate for what
minor time-gain error existed.

To estimate the additional workload impact that time-gain
compensation imparts, consider that if no message exists in a
packet that the expected number of calls to the hash function,
Nh, (even for infinitely long messages) is only

Nh =
2

1− 2µ
(1)

where µ is the packet mark density. At the limit of the threat
model (i.e., where µ = 0.33), this means that the expected
number of calls is only six. However, this workload penalty
must be paid for each candidate end-of-packet mark in the time-
gain window. If this window is ±ε of the packet length, then it
would be expected that 2µεme candidate marks will be found.
Thus the total expected burden, per mark in the bit stream, is

4µε
1− 2µ

me (2)

For the RF demonstrator’s typical configuration, the expected
67 candidates would equate to 400 hash calls at the threat
model limit when ε = 100ppm (10−4). Even under ideal
circumstances with no attack, decoding a packet containing a
single message involves a minimum of 2m+k calls to the hash
function. For the assumed configuration this is 2,032 hash calls.
At the threat limit this doubles to slightly over 4,000 hash calls
for every actual message, be it from the genuine sender or the
attacker.

It must be kept in mind, however, that the time-gain burden
applies to each mark in the bit stream. Hence, assuming that
legitimate packets have been transmitted back-to-back, the
total number of hash calls due to this burden, at the edge
of the threat model, would be approximately 133 million. To
place this in perspective, decoding a packet that has been
driven to this density (via the addition of approximately 400
attack messages) would require, on average, 1.6 million calls
to the hash function. Thus the time-gain correction burden
would increase the receiver workload by a factor of about 83.
However, this cost allows the use of an oscillator that is three
orders of magnitude less accurate than would otherwise be
required. It must also be noted that this is the penalty paid
at the edge of the threat model. If, for example, the attacker
is transmitting 100 attack messages (and, hence 100 times the
energy as the genuine sender) bringing the packet density to
approximately 10%, the burden is only about 25.

A reasonable estimate of the burden, per message, is

2µε
1− µ

me (3)

where it is assumed that the packet density has been driven to
the level it is at solely through the presence of messages in the
channel. The simplifications made to obtain this expression are
conservative in that the actual burden will be less.

Preliminary measurements with the RF demonstrator show
that even using ε = 0.1% (i.e., allowing oscillators that are
four orders of magnitude worse than otherwise required) the
decoder is capable of keeping up with the additional burden
quite well, especially if a small number of checksum bits are
prepended to the data bits when the message is formed so as
to extinguish empty packets faster.

XI. CONCLUSION

To rob an adversary of as many attack modes as possible,
a concurrent codec can use simple modulation (OOK) and
reception (radiometry) techniques that do not incorporate so-
phisticated timing recovery schemes. Such asynchronous pro-
tocols, when used with traditional modulation techniques and
coding schemes in a symmetric channel, result in unacceptably
high bit error rates for useful packet lengths. However, the
highly asymmetric bit error rates needed for the use of a
concurrent codec opens the door for techniques that leverage
that asymmetry allowing the designer to trade processing
effort against component tolerances and circuit performance
specifications, particularly with regards to jitter and oscillator
mismatch. Given that a concurrent codec lends itself to highly
parallelized processing algorithms and that processing capacity
in general keeps getting faster and cheaper, this is an exchange
well worth considering.

XII. ACKNOWLEDGEMENTS

This work was sponsored in part by the Air Force Informa-
tion Operations Center (AFOIC), Lackland AFB, TX, and was
performed principally at the Academy Center for Cyberspace
Research (ACCR) at the United States Air Force Academy.

REFERENCES

[1] L. Baird, W. Bahn, and M. Collins, “Jam-resistant communication
without shared secrets through the use of concurrent codes,” United States
Air Force Academy, Tech. Rep. USAFA-TR-2007-01, 2007.

[2] L. Baird, W. Bahn, M. Collins, M. Carlisle, and S. Butler, “Keyless
jam resistance,” in Proc. 8th Annual IEEE SMC Information Assurance
Workshop (IAW), jun 2007, pp. 143–150.

[3] W. Kautz and R. Singleton, “Nonrandom binary superimposed codes,”
IEEE Transactions on Information Theory, pp. 363–377, 1964.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, Jul.
1970.

[5] G. Cormode and S. Muthukrishnan, “What’s hot and what’s not:
Tracking most frequent items dynamically,” in Proceedings of ACM
Principles of Database Systems, 2003, pp. 296–306. [Online]. Available:
”http://acm.org/sigmod/pods/proc03/online/210-cormode.pdf”

7

