
Parallel BBC Decoding With Little Interprocess Communication

Leemon C. Baird III
William L. Bahn

Academy Center for Cyberspace Research
United States Air Force Academy

USAFA-TR-2009-ACCR-01

November, 2009

Abstract

Algorithms are proposed for decoding BBC codewords in parallel, as would be used in a BBC-
based radio that is continuously decoding. Interprocess communication is minimized, with a
simple star topology of interconnections. Randomness is injected at three different places to
both improve performance and to resist various attacks.1

Background

A wireless, jam-resistant, communication system based on BBC (Baird, Bahn, Collins) coding
[1] could be organized in this way:

An original message (“Hello”) is BBC encoded to give a codeword that is mostly 0 bits with a
few 1 bits. A spreading operation converts this codeword into a waveform that spreads each 1 bit
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

1	 This	 work	 was	 sponsored	 in	 part	 by	 the	 Air	 Force	 Information	 Operations	 Center	 (AFIOC),	 Lackland	 AFB,	 TX,	 and	 was	
performed	 at	 the	 Academy	 Center	 for	 Cyberspace	 Resaerch	 (ACCR)	 at	 the	 United	 States	 Air	 Force	 Academy.	

in both time and frequency. The waveform is transmitted through a wireless channel, and
received at the other end. The receiver can then de-spread the signal, apply a threshold to the
result, and recover the codeword. Finally, the codeword is decoded using the BBC algorithm.

This paper examines how the last step, decoding, can be done in parallel on a parallel processor,
especially an ASIC designed for this specific task.

Note that a BBC jam resistance system will be constantly receiving signals, so the packets to be
decoded will overlap in time. Furthermore, we will assume that the threshold on the correlator is
set so that every packet has exactly 1/3 of its bits set to 1, and 2/3 set to 0. The following
diagram shows how the decoding might look when there are no actual messages being sent, only
random noise.

In this case, we assume there are many more bits off the right edge of the figure. When an actual
message is sent, the packet will always start with a 1 bit. Therefore, any 1 bit in this sequence is
potentially the start of a packet, which must be decoded, but each zero bit cannot be the start of a
packet, and therefore does not need to be decoded. Note that every 1 bit in the figure has a
decoding tree below it, though the trees are sometimes just a single dot.

It is useful to find the expected size of those trees. Let T be the expected number of nodes in a
decode tree, including the root. If the packet is 1/3 filled with 1 bits and the rest 0, then there is a
2/3 probability that any given bit position will lack a tree entirely. In the remaining 1/3 of the
cases, there will be 1 node for the root, plus a 1/3 probability that it will have a left subtree with
an expected E nodes, and a 1/3 probability that it will have a right subtree with an expected E
nodes. Therefore E must satisfy the equation:

 E = (2/3)(0) + (1/3)(1 + (2/3)E)

Solving for E yields E=1. Therefore, in an environment with no real messages, there will on
average be only a single tree node to search per received bit, even when the density is 1/3.

If a processor can search one tree node per time step, then a single processor will be able to
handle the decoding of the random trees when there is no actual message. A more realistic

estimate for a depth-first search of the trees might be 2 time steps per node (including
backtracking), so two parallel processors would be needed to keep up with the no-message state.

When an actual message is sent, the situation looks like this:

This diagram shows 150 received bits, and a single message of 300 bits. The expected number
of nodes to search is 150 nodes for the trees with random noise, plus 300 nodes for the message,
plus 300 nodes for the random trees that spawn off of the actual message tree due to random
noise.

Assume a large set of simple processors designed to do depth-first searches on these trees. Any
time a processor reaches a depth equal to the message length (e.g. 1000 for 1000-bit messages),
then it signals a central coordinator that it has a message, and sends that message to the
coordinator. As new bits are received, that coordinator will assign idle processors to decode the
incoming trees, with one processor assigned to each tree.

A buffer will store the received bits. This buffer will be longer than a single packet. Assume
that the buffer is large enough that when an actual message arrives, a single processor assigned
to that tree will be able to accomplish a depth-first search of the tree before it slides over and
falls out of the buffer. If packets are at least 4 times longer than the message length, then a
buffer length of twice the packet length should suffice.

Suppose that the legitimate sender transmits one message, and the attacker transmits 4 messages.
The decode trees might look like this:

In this case, 5 processors will end up being assigned to the 5 messages, and will decode each of
them before they disappear. Another 1 or 2 processors will be assigned to all of the tiny trees at
the top. So 7 processors are enough to decode this. A chip might be designed to hold 100 or
1000 processors, so all but 7 of them would be idle. To avoid this, the coordinator can assign
idle processors to trees that are already being searched, in case there are multiple messages in
one tree.

Each new processor assigned to a tree will start over at the top, and decode it with a depth-first
search. But the search will be randomized to avoid finding the same messages as the other
processors assigned to that tree. In a depth first search, the first time a node is reached, the
searcher travels down to one of its children. When it later backtracks to that node, it travels
down the other child. It does not matter which child is traversed first. So each processor can
randomly decide which child to choose first in each layer. Given this randomized approach, if a
tree has many more processors than messages, then it is very likely that every message will be
found before the tree falls out of the buffer. If there are many more processors than messages,
then the system simply doesn’t have the computational power to decode all the messages, but it
is likely that each processor will find a different message, and so the decode has graceful
degradation. It decodes as many messages as its processing power allows, and misses the others,
relying on higher-level protocols like TCP/IP to request the message be resent.

We note that for this algorithm, if every message ends up in a separate tree, then the parallel
search algorithm gives essentially perfect, linear speedups. Doubling the number of processors
on the chip will double the number of messages per second that can be received. An attacker can
only jam the system by expending the energy needed to flood the receiver with more than that
many messages. And even then, the system degrades gracefully, receiving as many messages as
its hardware allows, where it is essentially random which messages are chosen.

If the attacker manages to send many messages that start at the exact same bit position as a
legitimate message, then the system has slightly less than linear speedup. So this would be the
ideal attack for an attacker. However, it is an extremely difficult attack. The attacker must start
his attack packet at exactly the same bit position as the legitimate message. If packets are
thousands or millions of nanoseconds long, the attacker must synchronize to within only a few
nanoseconds. This requires the attacker to know the exact distances between himself, the sender,
and the receiver, with all 3 distances known to within a few feet. And he must be continually
sending the first few bits of his packet so that when he discovers the sender has started sending,
he will have already started his packet at the correct time. All of this can be done, but it is
difficult, and it still gives only a small help to the attacker.

To further resist the attack, two additional sources of randomness are injected into the system.
Any legitimate sender should send each of his messages in a separate packet, and must delay the
start of the packet by a random amount. Note that this does not affect the bit rate by much,
because the sender’s packets can overlap. So the each packet might be delayed by a random
duration on the order of only 1% of the packet length. Second, the sender should preface each
message (that’s message, not packet) with 16 random bits, and the receiver should ignore the
first 16 bits of any decoded message. This randomizes the tree corresponding to any given
message, which makes it difficult for the attacker to target certain parts of the tree, even if the
attacker knows exactly what data the sender is planning to send.

The algorithm described here can be briefly summarized as follows:

It appears that this algorithm will be resistant to attacks, and to random noise and traffic from
other users. This should be confirmed with simulation and actual experiment. It also appears
that this can be easily implemented in hardware. The various processors do not need to
communicate with each other. They only need to communicate with a coordinator, in a star
topology. Only a few signaling lines are needed for the coordinator to assign a processor to the
tree corresponding to a bit position in the buffer, or tell it to stop because its tree has fallen out of
the end of the buffer, or to detect whether the processor has found a message, or has completed
the entire depth-first search of the tree. It should be possible to use an architecture with a
general-purpose CPU for the coordinator and massively-parallel chips for the search processors,
and the communication bandwidth should be acceptable, even if these are spread across multiple
chips. We note that the search itself can be efficient if the hash function is a linear feedback shift
register, and if the received bits are continually broadcasted to all processors, and every
processor keeps its own local copy of the buffer. Given all that, this appears to be a working
solution for parallel BBC decoding.

References

[1] Baird, Leemon C. III, Bahn, William L. & Collins, Michael D. (2007) Jam-Resistant
Communication Without Shared Secrets Through the Use of Concurrent Codes, Technical
Report, U. S. Air Force Academy, USAFA-TR-2007-01, Feb 14.

