
Unkeyed Jam Resistance 300 Times Faster:
The Inchworm Hash

Leemon C. Baird III
and Martin C. Carlisle
and William L. Bahn

Academy Center for Cyberspace Research
Computer Science Department

US Air Force Academy
USAFA, Colorado 80840

Email: Leemon.Baird@USAFA.edu

Abstract—An important problem is achieving jam resistance in
omnidirectional radio communication without any shared secret
or shared key. The only known algorithm that solves this problem
is the BBC (Baird, Bahn, Collins) concurrent code [1]. However,
BBC requires the choice of a hash function. The choice of hash
determines both the speed and security of BBC. Cryptographic
hashes such as the standard SHA-1 hash are not well suited for
this application. We propose the Inchworm hash, a new algorithm
specifically designed for use in BBC. We show that this avoids a
theoretical weakness for this application that is present in SHA-1
due to the Small Internal State Theorem [2], and that it passes a
simple battery of empirical tests. When used in BBC, Inchworm
is over 300 times faster than SHA-1. This speeds up encoding
and decoding by orders of magnitude, with great benefits for
practical implementations of unkeyed jam resistance, especially
on small, cheap radios. 1

I. INTRODUCTION

Jam resistance has typically been achieved in omnidirec-
tional radios using some kind of secret shared by the sender
and receiver. In frequency hopping, the sequence of frequen-
cies must be secret. In Direct Sequence Spread Spectrum
(DSSS), the chip sequence must be kept secret. In pulse-based
Ultra Wideband (UWB) systems, a secret must be incorporated
into the timing of the pulses. However, it is desirable to achieve
jam resistance without keys. This makes key management
easier, since there is no key. It allows the manufacture of large
numbers of identical radios that never have to be re-keyed,
and that don’t have to be protected from adversary reverse
engineering.

There is currently only one system for achieving such
unkeyed jam resistance: the BBC (Baird, Bahn, Collins) con-
current code [3], [1], [4], [5], [6], [7], [2], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]. The algorithm
will not be given here; see the above references for detailed
descriptions of it. It is important to note that one part of this
algorithm requires the choice of a hash function. The hash
function can be any function that takes in a binary string of
up to about 1000 bits, and returns a hash of at least 20 to 30

1This work was sponsored in part by the 688th Information Operations
Wing (IOW), Lackland AFB, TX, and was performed at the Academy Center
for Cyberspace Resaerch (ACCR) at the United States Air Force Academy.

bits. Ideally, the mapping from inputs to outputs should look
random, though any given input should always give the same
output.

When BBC decodes information that the receiver’s radio
receives, the received information is represented as a packet
of bits, with about one third of them set to 1 and the rest 0. The
BBC decoder then converts this packet into a set of received
messages. During decoding, most of the time is spent in calls
to the hash function.

The BBC decoder starts by calling the hash function on
an empty string. Then it repeatedly adds one bit to the end
of the string or deletes one bit from the end of the string,
and calculates the hash of the resulting string. The string is
therefore constantly growing and shrinking at the right end, as
the decoder performs a depth-first search through a space of
possible strings. This search is expensive for a standard hash
function such as SHA-1 because it must start over from scratch
when hashing each of the strings. It would be better to have an
incremental hash function that can quickly calculate a hash of
a new string that differs from the last string in just a single bit
addition/deletion at the end. That is the motivation for creating
the Inchworm algorithm, which turns out to be more than 300
times faster than SHA-1 for this specific application.

In a BBC system, the attacker may try to create an attack
packet which is a sequence of bits with one third 1 bits and
the rest 0 bits. A good attack packet is designed to require as
many calls as possible to the hash function during decoding.
A successful attack will require so many calls that the receiver
is overwhelmed and is unable to decode all of the packet, thus
jamming the communication. The security of a hash function
for BBC is the degree to which it prevents this attack.

The Small Internal State Theorem [1] proves that for any
hash with a small amount of changeable memory (a small
internal state), there will exist an attack packet that increases
the decoding time exponentially. Therefore, it would be prefer-
able to implement BBC with hashes that have as many bits
of internal state as there are bits in the longest string that will
be hashed. In fact, they should be twice as long, if doing
average-case rather than worst-case analysis. For a typical
BBC implementation, this means it needs at least 2000 bits of

internal state, which is more than any of the cryptographic hash
functions currently in use. Of course, this is only an existence
proof. It proves that effective attacks exist for a hash like SHA-
1. But it may be difficult for an attacker to actually find how to
do such an attack with a practical amount of computation. So
the flaw in SHA-1 is only theoretical. And it is only a “flaw”
when SHA-1 is used in a BBC code, not when it is used for
its originally-intended purpose. Still, it is possible to avoid
even this theoretical flaw by developing a hash function with
a larger internal state. So for both speed and security reasons,
there is a need for a better hash to be developed specifically
for use in BBC. Inchworm is such a hash.

II. DERIVATION OF INCHWORM

The proposed Inchworm hash is shown as a block diagram
in Fig. 1 and as a C implementation in Fig. 2. The C code is
the official definition of the algorithm, taking precedence in
case of conflict with the diagram or text. It is designed to be
very fast when used incrementally, to have an internal state
of more than 2000 bits, and to at least pass the currently-
known theoretical and empirical security tests (though few
such tests exist yet for testing BBC security). This section
will go through the derivation of the algorithm, explaining the
reasons for each choice made along the way.

Hashes are typically designed by dividing the string to be
hashed into blocks (b1, b2, b3, ...bn), initializing an internal
state buffer B to all zeros, and then repeatedly consuming
each block bi and updating the internal state B with some
nonlinear function F :

B ← F (B, bi) (1)

The arrow represents a variable assignment, which is first
done for b1, the first block of the string to hash, then for b2,
and so on for all the blocks of the string. After the final block
is hashed, the final value of B is the hash of the string.

The F function is typically not invertible. However, BBC
decoding benefits from an incremental hash that can hash a
string then quickly recalculate the hash when a bit is added
to the end or deleted from the end. To support efficient
deletions, F must be invertible. So we will choose F to be
an “encryption” of B using Bi as a “key”, to ensure it can be
inverted. There are many ways to build such a cipher, but one
common design is a Feistel design. In a balanced Feistel, the
buffer B is divided into two halves, one of which is updated
on each step. This would be fast on modern processors if the
internal state of the hash were small enough to fit in a few
registers. But the Small Internal State Theorem requires the
internal state to be on the order of twice the message length,
as mentioned above, so the lengths should sum to around 2000
bits. Therefore, a better approach is to use an unbalanced
Feistel structure. The internal buffer B will consist of 31
different blocks of 64 bits each, B0, B1, B2, ...B30. Then, as
the ith bit of the string, bi, is consumed, only one block is
updated:

Bi mod 31 ← Bi mod 31 XOR f(Bi−1 mod 31, bi) (2)

where f is an arbitrary function, that is not necessarily
invertible. Note that as each bit bi is consumed, it immediately
affects the single block Bi mod 31 directly, and then affects all
future blocks of B indirectly, because each time an element
of B is modified, the new value is then fed back into the f
function on the next round. So at any given time, the latest
block of B acts as a fast-changing internal state, while the rest
of B is a slowly-changing internal state.

Note that the above assignment cancels itself if performed
twice, so it is easy to run this algorithm backward, to return
the internal state to an earlier value. So once a string has
been hashed, bits can be deleted from the end of it, and the
algorithm run backward to return to the appropriate internal
state. Then new bits can be added to the end, and the hash of
the new string can be found quickly.

The function f is shown as being a function of only B and
b. But there would be no problem if it were a function of
additional internal state variables, as long as they, too, could
be run backward. For example, there could be a 64-bit variable
S that changes over time in an invertible way, if it is updated
by the bit bi using some constant D this way:

if (bi=0)
S ← S XOR D

S ← S <<< 39

This updates S by XORing with the constant, if and only if
the bit is 0. And then the <<< operator rotates S left by 39
positions, regardless of the value of the bit. The conditional
XOR allows the bit to affect about half the bits of S (assuming
the constant D has about half its bits set to 1). The rotation
ensures successive XORs with D won’t cancel each other.
The number 39 is coprime to 64 (i.e. they have no factors in
common), so it takes a full 64 steps before S rotates back
around to where it started. A rotation by 1 would also work,
but rotating by 39 ensures that each bit moves fairly far each
time, and takes as long as possible before it is even near its
original position. A rotate by 39 has that effect on a 64-bit
variable because 39 is the Golden Ratio times 64, rounded to
the nearest number coprime to 64.

This update to S ensures good avalanche, in the sense that
each bit bi affects about half the bits of S, assuming D is a
typical random number, and so has about half its bits set to 1.
It also ensures that any given bit bi will continue to have an
effect on S for a fairly long time. However, it is purely linear.
If you look at S after hashing a string of bits, and then redo
it with just one bit different, the two S values will differ by
the XORs of just two rotations of D.

To make this nonlinear, we first need to add a second 64-bit
internal state variable, R, with slightly different parameters.
It can be updated with a new constant C, and rotated by a
slightly-different amount 37 (which is close to 39 and coprime

R
(64 bits)

<<< 37

S
(64 bits)

<<< 39

B
(31-word shift register of 64-bit words)

 Hash(b1…bi) bi

D

C

f

Fig. 1. Block diagram of Inchworm (f is the identity function) and
Inchworm-S (f is more complex), showing the update for bi, the ith bit
from the string to be hashed, where <<< is left rotation, ⊕ is XOR, and the
switch in the lower left routes signals along dotted lines when bi = 0, and
solid when bi = 1. Every arrow carries a 64-bit signal (except bi).

to both 39 and 64). The bits can interact nonlinearly if the
XOR of S and R with the current block of B is returned as
the hash, and if the hash then feeds back into S or R on the
next step.

if (bi=1)
R← (R XOR C) <<< 37
S ← (S XOR Bi−1 mod 31) <<< 39

else
R← (R XOR Bi−1 mod 31) <<< 37
S ← (S XOR D) <<< 39

Bi mod 31 ← Bi mod 31 XOR R XOR S

The result calculated on the last line is returned as the hash
of the string (b1, b2, ..., bi). So if the bits of a string are fed to
the algorithm in order, it will calculate the hash of all prefixes
of the string, as is needed in BBC decoding.

This is almost the complete Inchworm algorithm for hashing
the next bit. All that remains is to define the initialization
done at the start of the string, and the values of the C and D
constants. The complete algorithm is shown as a block diagram
in Fig. 1 and as a C implementation in Fig. 2.

It would seem that most arbitrary constants C and D would
be acceptable for this algorithm. Therefore, the given C code
uses Inchworm itself as a pseudo-random number generator
to create the constants through a bootstrapping process. The
constants are first set to 1, then the hash is run 512 times,
feeding back the least significant bit of each hash output as
the next input bit to hash. After 512 rounds, the final output
is captured to define C. Then another 512 iterations are done
using that C to get D. And another 512 rounds are run using
those C and D values to initialize the system at the start of
each string. The example code recalculates C and D this way
every time a new string is hashed. Of course, any practical
implementation would just hard code the C and D constants

// Inchworm - A hash for use with BBC codes
// 25 Aug 2010, Version 1.0
// Leemon Baird

// The Inchworm internal state.
typedef struct {

uint32_t p;
uint64_t R, S, C, D, B[31];

} inchworm_t;

//You should check that your compiler compiles each
//of the following as a single x86-64 rotate instruction
inline uint64_t rotL (int n, uint64_t x)

{return (((x)<<(n)) ˆ ((x)>>(64-n)));}
inline uint64_t rotR (int n, uint64_t x)

{return (((x)>>(n)) ˆ ((x)<<(64-n)));}

//uncomment the 1st line for Inchworm, 2nd for Inchworm-S
#define f(x) x
//#define f(x) g(1,g(3,g(9,g(27,(x)))))

inline uint64_t g(int r, uint64_t x) {
return rotL(r,x) ˆ (x | rotR(r,x));

}

//Set the current string to the empty string,
//and return its hash. This must be called
//before inchwormAdd or inchwormDel.
uint64_t inchwormReset(inchworm_t *s) {

s->C = s->D = 1;
s->C = inchwormReset2(s);
s->D = inchwormReset2(s);
return inchwormReset2(s);

}

uint64_t inchwormReset2(inchworm_t *s) {
int i;
uint64_t b;
b = s->R = s->S = s->p = 0;
for (i=0; i<31; i++)

s->B[i] = 0;
for (i=0; i<512; i++)

b = inchwormAdd(s,b&1);
return b;

}

// Concatenate a bit (0 or 1) to the end of the
// current string, and return its hash.
// inchworm_t *s is the inchworm state
// uint64_t bit is string’s new last bit (0 or 1)
#define inchwormAdd(s,bit) (\
(bit) ? ((s)->R = rotL(37,(s)->R ˆ (s)->C), \

(s)->S = rotL(39,(s)->S ˆ (s)->B[(s)->p % 31])) \
: ((s)->R = rotL(37,(s)->R ˆ (s)->B[(s)->p % 31]), \

(s)->S = rotL(39,(s)->S ˆ (s)->D)), \
((s)->p)=(((s)->p)+1), \
(s)->B[(s)->p % 31] ˆ= f((s)->R ˆ (s)->S) \

)

//Delete the last bit, return the resulting string’s hash.
#define inchwormDel(s,bit) (\
(s)->B[(s)->p % 31] ˆ= f((s)->R ˆ (s)->S), \
((s)->p) = (((s)->p)-1), \
(bit) ? ((s)->S = rotR(39,(s)->S) ˆ (s)->B[(s)->p % 31], \

(s)->R = rotR(37,(s)->R) ˆ (s)->C) \
: ((s)->S = rotR(39,(s)->S) ˆ (s)->D, \

(s)->R = rotR(37,(s)->R) ˆ (s)->B[(s)->p % 31]),\
(s)->B[(s)->p % 31] \

)

Fig. 2. C implementation of the Inchworm algorithm.

rather than recalculating them every time.
Inchworm is nonlinear. The first bit affects both R and S

in a large way, flipping about half the bits of each. So the first
bit b1 affects about half the bits in the returned hash value (i.e.
it has good avalanche properties, as described above). When

the second bit b2 is processed, it controls whether that result
will be XORed into R or S, which in turn controls whether
it is rotated by 37 or 39 positions. So many of the bits of
the second hash are affected by both b1 and b2, interacting
nonlinearly. This continues for the rest of the bits of the string
being hashed, so that all of them interact nonlinearly with each
other.

Inchworm is also surprisingly simple, using only 64-bit
XORs and rotations, plus a simple decision based on the
incoming bit. There are no binary multiplications or additions,
no table lookups or S-boxes, and no complex bit transposi-
tions. There aren’t even any bitwise AND or OR operations.
All operations are fast in both hardware and software. The
B buffer is a simple shift register, with only a single entry
being read and written on each step. All of the operations
are independent of the endianness of the machine used to
implement it. But if it is desired to interpret the hash as a
sequence of bytes, such as when writing it to a file, it is hereby
defined to output in little endian order (i.e. least significant
byte first).

Though there is an enormous literature on analyzing cryp-
tographic hash functions, it is not clear how much of that
carries over to hash functions designed for use in BBC codes.
Traditional hash functions are intended to make it difficult to
find collisions. But the Inchworm output is only 64 bits, so it
is easy to find collisions. On the other hand, traditional hashes
typically have small internal state, but large internal state is
required by the theory of BBC codes. So both Inchworm and
traditional hashes are “weak” by the standards applied to the
other. Traditional hash functions are often analyzed with some
form of linear or differential cryptanalysis. It is not at all
clear that such analysis has any relevance for a hash used for
BBC codes. Although Inchworm currently avoids all known
theoretical attacks when used in BBC, that is not saying much,
since the theory of how to attack BBC is still in its infancy.

Given these uncertainties, it might be desirable to add addi-
tional nonlinearities to Inchworm, using operations that appear
to be different from the current ones, in order to possibly
strengthen it against unknown attacks. That is the purpose
of the block labelled “f” in the block diagram. In normal
Inchworm, that block is the identity function, f(x) = x. But
we will now propose a variant algorithm called Inchworm-S
(where “S” stands for both “Secure” and “Slow”), that puts
additional operations in the f box. It is clear that Inchworm-
S is slower than Inchworm. Whether it is also more secure
remains to be seen. The new f function is defined in terms of
a g function:

f(x) =g(1, g(3, g(9, g(27, x)))) (3)
g(r, x) =(x <<< r) XOR (x OR (x >>> r)) (4)

These operations work on different principles from the rest
of Inchworm. The g function combines the 64-bit x with
copies of itself rotated left and right by r bits. The OR
ensures nonlinearity, and the XOR ensures 1 and 0 bits are

about equally common. When r = 1, this g operation is
one that has been proposed before for cryptographic purposes
[21]. Although it has received little cryptanalysis, and so its
cryptographic security is largely unknown, it forms only a
small part of Inchworm-S, and so may be good enough for
the present purposes. In the past, it has only been suggested
with r = 1, which has terrible avalanche properties, requiring
32 steps for a single bit to affect all others. That is why
consecutive powers of 3 are used for r here, to achieve full
avalanche in just 4 rounds, as shown.

Inchworm uses 64-bit registers for R, S, the elements of
B, and the final hash output. The registers could be increased
to larger numbers of bits if it were being run on a processor
optimized for larger sizes. In that case, the algorithm would
remain largely unchanged. The C and D constants would still
be bootstrapped the same way. The rotation distance of 39
would become a rotation by the Golden Ratio times the new
register size, rounded to the nearest number coprime to the
register size. And the 37 would become the nearest number
that is coprime to both that number and the size. Inchworm-S
would continue to use powers of 3 (assuming the new register
size is not a power of 3). It would use all powers of 3 up
to the largest power of 3 that is less than the new register
size. There is no apparent reason to change the size of the
shift register (31 elements) or the number of rounds in the
initializer (512 iterations), regardless of the size chosen for
the registers. It might be expected that larger registers give a
more secure hash for BBC, though they would certainly slow
down the algorithm when running on a processor optimized
for 64-bit registers.

To aid in implementing the algorithm, it is useful to know
the constants C and D, rather than deriving them through the
bootstrap method. It is also useful to have good test vectors.
Because of the feedback used in the initialization algorithm,
the value returned by the initialization (which is the hash of
the empty string) is a sufficient test vector. It gives the result
of hashing 512 bits, about half of which are 0 and half 1,
which tests the algorithm thoroughly. The constants and test
vectors for both algorithms are:

Inchworm:
C = 0xd489ebd61e8e3ea1
D = 0x2d236ed1707ecf2c
hash() = 0x0c29b196ec9c4ef5

Inchworm-S:
C = 0x808ae1ad9290478c
D = 0x09f598887c4c10fc
hash() = 0x093aa5618c96e5a9

Inchworm is a 64-bit hash. As with any other 64-bit hash, it
is easy to modify the output as needed. If an n-bit hash is need,
for n < 64, then use the n least significant bits of Inchworm’s
output. If a hash value is needed in the range 0 to n-1, then
interpret the output of Inchworm as an unsigned integer, and
take the output modulo n. Both of those approaches are useful
for most BBC implementations, where the output of the hash
will be interpreted as choosing a point in time. However, for a

frequency-hopping BBC implementation, it may be necessary
for it to choose both a point in time and a frequency, (i.e.,
a 2-dimensional hash). If there are n points in time and m
frequencies from which to choose, then the 32 least significant
bits of the output can be taken modulo n and the upper 32 bits
can be taken modulo m to choose both a time and a frequency.

In one such implementation, there would be n points in time
and m frequencies, and whenever the system is given an n-bit
string, that string will have n possible prefix strings (from 1 bit
to n bits in length), and the hash must choose a pseudo-random
frequency for each prefix string, and a distinct pseudo-random
time for each prefix string. So the frequency hashes can still
be chosen by simply taking the upper 32 bits modulo m, but
the time hashes must be chosen in a slightly different way,
so that no two prefixes have the same time hash. This is easy
to accomplish. Create an n-element array initialized with the
numbers from 0 to n-1. When the first prefix (which is just
the first bit of the string) is hashed, take the least significant
32 bits modulo n to choose an element of the array. Swap
that element with the nth element of the array, and return it
as the time hash of the first prefix. Then when the second
prefix is hashed (i.e. the first two bits of the string), take the
least significant 32 bits modulo n− 1, swap the first element
with the element in position n− 1, and return that as the time
hash for the second prefix. The third time hash works modulo
n− 2, and so on.

Of course, this entire discussion of modifying the output
applies to any hash, not just Inchworm. but it is included here
for completeness.

III. EMPIRICAL RESULTS

In addition to mathematical analysis of a hash, it is useful to
get empirical data on how well a computer search can attack it.
If it survives that attack, that provides some (weak) evidence
that the hash is secure. But if such an attack is successful, then
the hash is definitely insecure, at least for that application. It
is also useful to time it and compare it to SHA-1 for the case
of incremental hashing, as needed in BBC decoding.

Inchworm was timed at 2.56 clock cycles per hash, on a
2.8 GHz MacBook Pro (one core of an Intel Core 2 Duo),
and SHA-1 was timed at 1665 cycles, so Inchworm was 650
times faster. These are cycles per string hashed, not cycles per
byte or cycles per bit. This was non-optimized Inchworm (in
C without any embedded assembly language) compared to the
optimized SHA-1 (written in C with embedded assembly) that
is part of the OpenSSL package that comes with the MacOSX
operating system.

During the SHA-1 test, all prefixes of a 1000-bit string were
hashed equally often. During the Inchworm test, half of the
hashes were found by adding a bit to the last string hashed, and
half were found by deleting a bit, with 0 and 1 bits occurring
equally often. It was also timed with only bit additions instead
of mixed additions and deletions, and the time was the same.
This was timed with code carefully written to avoid letting
the compiler cheat. For example, the random number generator
was used to either set x=0 and y=1 or to set them as the reverse

(x=1 and y=0). Then each call to add or delete a bit passed
in either x or y, which prevented the compiler from knowing
whether it was a 0 or a 1, and so prevented it from hard coding
the if statements. And the entire Inchworm internal state was
printed at the end to ensure there were no unused variables
for the compiler to eliminate. The timing loop was manually
unrolled, and macros were used for implementing the hash
function, in order to increase speed. The C code given in this
paper is the exact code that was timed. Although Inchworm
would be slower for hashing an arbitrary string, it is clearly
very fast for the incremental problem of hashing a string that
changes by a single bit at the end, as occurs in BBC decoding.
Inchworm was specifically designed for this single purpose,
and appears to be well suited for it.

Note that Inchworm averages so few cycles that it was very
sensitive to subtle cache effects, making consistent timing
difficult. Changing irrelevant parts of the code (even code
after the timing loop) had large effects on the timing. In an
actual program that used Inchworm, the time per hash could
be longer or shorter, or even zero (with superscalar pipelining).

In an actual BBC implementation, during decoding it would
have to both add and delete one bit for each hash of interest,
so in that sense Inchworm should be considered to be only half
as fast. So it might be best to describe Inchworm as 325 times
as fast as SHA-1, which is why the more conservative ratio
of 300 is claimed in the title of this paper. But regardless,
it is clear that Inchworm is orders of magnitude faster than
existing hashes for this particular application, and that most
BBC programs that use Inchworm will end up spending the
vast majority of their time in operations other than the hash.
Further speedups of Inchworm are unlikely to have much of
an effect on total running time of any real implementation of
BBC that uses Inchworm.

Inchworm-S was timed at 10.8 clock cycles per hash, using
the same timing procedures as for Inchworm, so it is almost 5
times slower. Even so, 10.8 clock cycles is fairly fast for a hash
function, and is still orders of magnitude faster than the 1665
cycles required by SHA-1. For applications where security
is more important than raw speed, Inchworm-S might be a
useful algorithm. None of our current theoretical or empirical
tests are able to distinguish the security of Inchworm and
Inchworm-S. It is theoretically possible that they are equal, or
even that Inchworm is actually more secure than Inchworm-
S. But at this point, Inchworm-S would seem to be the more
conservative choice for security.

A simple empirical attack was used to compare the security
of Inchworm, Inchworm-S, and SHA-1 for use in BBC. The
attacker was a randomized algorithm that created a BBC attack
packet designed to maximize the number of calls to the hash
during its decoding, while having only one third of its bits
set to 1. In each run, a 2048-bit packet was initialized to
the encoding of a 40-bit random message. Then, it repeatedly
flipped the 0 bit in the packet that would most increase the
number of calls to the hash function needed to decode it. When
it reached a one third density of one bits, it would alternate
that operation with the flipping of the 1 bit that caused the

Fig. 3. Cumulative Distribution Function (CDF) for results of the attack
optimizer running against Inchworm (solid), Inchworm-S (dashed) and SHA-
1 (dotted) for a quarter million iterations each (a third that for SHA-1). The
curves are practically identical.

smallest decrease in the number of calls. When a pair of
such operations failed to change the packet, it returned the
number of calls needed to decode that packet, and started over.
This was repeated 250,000 times for Inchworm, the same for
Inchworm-S, and a third of that for SHA-1 (because it is so
much slower).

Figure 3 shows the resulting probability distribution for each
of the three algorithms. The curves are nearly identical, and
seem to lie directly on top of each other. They also have nearly
identical mean, median, mode, min, and max. These three
algorithms are therefore equally resistant to attack from this
simple attacker. This is good, because this attacker defeated
dozens of earlier versions of Inchworm during its development.
This doesn’t prove true security, of course. It is just serves as
a sanity check to guard against certain blatant flaws. And it
serves as a first step that can be expanded in future research.

IV. CONCLUSION

A new hash function was proposed, the Inchworm hash. This
hash was designed specifically for use in BBC, which is a very
different application from the typical uses of cryptographic
hashes. For this application, The new hash was shown to be
theoretically more secure than SHA-1 for BBC codes, while
being over 300 times faster than SHA-1. In addition, empirical
computer searches were run to find good attacks on the new
hash, and it survived those attacks without problems.

The 300-fold speedup makes Inchworm an important im-
provement for real-world implementations of BBC for un-
keyed jam resistance, especially on small, cheap radios with
less computational power.

Inchworm has not yet been broken by any of the current
analytical or empirical attacks considered here. The Inchworm-
S variant might be more secure, though it is slower. The use
of hashes for BBC codes is very different from traditional
cryptographic applications of hashes, so there is currently little
known about how to analyze its security. It would clearly be
useful to develop new cryptanalytic methods for analyzing
and attacking BBC hashes, and applying them to Inchworm.
Neither Inchworm nor any other hash should be trusted for
use in BBC until further analysis has been done. This appears
to be a fruitful area for further research.

REFERENCES

[1] L. C. Baird III, W. L. Bahn, and M. D. Collins, “Jam-resistant commu-
nication without shared secrets through the use of concurrent codes,” U.
S. Air Force Academy, Tech. Rep. USAFA-TR-2007-01, Feb 14 2007.

[2] L. C. Baird III and W. L. Bahn, “Security analysis of bbc coding,” U. S.
Air Force Academy, Academy Center for Cyberspace Research, Tech.
Rep. USAFA-TR-2008-ACCR-01, Dec 8 2008.

[3] W. L. Bahn, L. C. Baird III, and M. D. Collins, “The use of concurrent
codes in computer programming and digital signal processing educa-
tion,” Journal of Computing Sciences in College, vol. 23, no. 1, pp.
174–180, Oct 2007, also in the Proceedings of the 16th Annual Rocky
Mountain Conference of the Consortium for Computing Sciences in
Colleges (RMCCSC), Orem Utah.

[4] W. L. Bahn and L. C. Baird III, “Impediments to systems thinking:
Communities separated by a common language,” in Proceedings of the
4th International Conference on Cybernetics and Information (CITSA),
July 12-15 2007, pp. 122–127.

[5] L. C. Baird III, W. L. Bahn, M. D. Collins, M. C. Carlisle, and S. Butler,
“Keyless jam resistance,” in Proceedings of the 8th Annual IEEE SMC
Information Assurance Workshop (IAW), June 20-22 2007, pp. 143–150.

[6] L. C. Baird III and D. H. Kraft, “A new approach for boolean query
processing in text information retreival,” in Proceedings of the Inter-
national Fuzzy Systems Association (IFSA) 2007 World Congress, June
18-21 2007.

[7] D. Schweitzer, L. C. Baird III, and W. Bahn, “Visually understanding
jam resistant communication,” in Proceedings of the 3rd International
Workshop on Visualization for Computer Security, Oct 29 2007, pp.
175–186.

[8] W. L. Bahn and L. C. Baird III, “Extending critical mark densities in
concurrent codecs through the use of interstitial checksum bits,” U. S.
Air Force Academy, Academy Center for Cyberspace Research, Tech.
Rep. USAFA-TR-2008-ACCR-02, Dec 8 2008.

[9] ——, “Hardware-centric implementation considerations for bbc-based
concurrent codecs,” U. S. Air Force Academy, Academy Center for
Cyberspace Research, Tech. Rep. USAFA-TR-2008-ACCR-03, Dec 8
2008.

[10] W. L. Bahn, L. C. Baird III, and M. D. Collins, “Jam resistant communi-
cations without shared secrets,” in Proceedings of the 3rd International
Conference on Information Warfare and Security (ICIW08), April 24-25
2008.

[11] W. L. Bahn, L. C. Baird III, and D. Collins, Michael, “Oscillator mis-
match and jitter compensation in concurrent codecs,” in IEEE Military
Communication Conference (MILCOM08), Nov 17-19 2008.

[12] R. Thurimella and L. C. Baird III, Cryptography for Cyber Security and
Defense: Information Encryption and Cyphering. IGI Global, 2009,
chapter title: ”Network Security”.

[13] L. C. Baird III and W. L. Bahn, “Parallel bbc decoding with little
interprocess communication,” U. S. Air Force Academy, Academy
Center for Cyberspace Research, Tech. Rep. USAFA-TR-2009-ACCR-
01, Nov 2009.

[14] ——, “An efficient correlator for implementations of bbc jam resis-
tance,” U. S. Air Force Academy, Academy Center for Cyberspace
Research, Tech. Rep. USAFA-TR-2009-ACCR-02, Nov 2009.

[15] ——, “An o(log n) running median or running statistic method, for use
with bbc jam resistance,” U. S. Air Force Academy, Academy Center
for Cyberspace Research, Tech. Rep. USAFA-TR-2009-ACCR-03, Nov
2009.

[16] S. Hamilton, “Secure jam resistant key transfer,” Masters thesis, Auburn
Univeristy, Tech. Rep., May 2008.

[17] M. Kuhr, “An adaptive jam-resistant cross-layer protocol for mobile ad-
hoc networks in noisy environments,” PhD thesis, Auburn Univeristy,
Tech. Rep., May 2009.

[18] D. Sanders, “A single-hop medium access control layer for noisy
channels,” PhD thesis, Auburn Univeristy, Tech. Rep., August 2009.

[19] S. S. Hamilton and J. A. Hamilton Jr., “A secure jam resistant key
transfer : Using the dod cac card to secure a radio link by employing
the bbc jam resistant algorithm,” in IEEE Military Communication
Conference (MILCOM08), Nov 17-19 2008.

[20] FIPS PUB 180-1 Secure Hash Standard. National Institute of Standards
and Tchnology, 1995.

[21] S. Wolfram, A New Kind of Science. Wolfram Media, 2002.

