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Abstract. The biggest obstacle to the efficient discovery of conserved energy
functions for cellular auotmata is the elimination of the trivial functions from

the solution space. Once this is accomplished, the identification of nontrivial
conserved functions can be accomplished computationally through appropriate
linear algebra.

As a means to this end, we introduce a general theory of trivial conserved

functions. We consider the existence of nontrivial additive conserved energy
functions (”nontrivials”) for cellular automata in any number of dimensions,
with any size of neighborhood, and with any number of cell states. We give the
first known basis set for all trivial conserved functions in the general case, and

use this to derive a number of optimizations for reducing time and memory
for the discovery of nontrivials.

We report that the Game of Life has no nontrivials with energy windows of
size 13 or smaller. Other 2D automata, however, do have nontrivials. We give

the complete list of those functions for binary outer-totalistic automata with
energy windows of size 9 or smaller, and discuss patterns we have observed.

1. Preliminaries: basic definitions

We consider cellular automata with k states in n dimensions. The neighborhood
of a cellular automaton is the region of surrounding cells used to determine the next
state of a given cell. The window of an energy function for a cellular automaton
is the region of adjacent cells that contribute to the function. Both neighborhoods
and windows are n-dimensional tensors, with the size of each dimension specified as
a positive integer. Given the size of such a tensor, it is useful to define the following
3 sets of tensors.

Definition 1.1. Cellular automata are composed of cells, each of which is in one
of k states (or colors) at any given time. The set C is the set of such colors, and
the set C∗ is that set augmented with another color named *. (* denotes a special
state with certain properties that simplify our proofs. It is explained in more detail
in the pages that follow.)

C = {0, 1, 2, . . . , k − 1} (1.1)

C∗ = C ∪ {∗} (1.2)

It is sometimes useful to choose one color to be treated specially. In all such cases,
the color 0 will be chosen.

Definition 1.2. An n-dimensional cellular automaton rule is a function R that
gives the color of a given cell on the next time step as a function of a neighborhood
of cells centered on that cell on the current time step. The neighborhood is an n-
dimensional tensor of size w1 × · · · ×wn, where each wi is an odd, positive integer.
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R : Cw1×···×wn → C (1.3)

Definition 1.3. An n-dimensional cellular automaton is an n-dimensional tensor
whose elements are in C, and which is updated on each time step according to a
cellular automaton rule R, applied to every cell in parallel. The rule is a function
applied to each cell and its neighbors, where neighbors wrap toroidally (i.e. the top
edge is considered adjacent to the bottom, the left edge is adjacent to the right,
and so on for each dimension).

Definition 1.4. The successor function advances a region within a cellular au-
tomaton one time step by applying a rule R to a region M of size s1 × · · · × sn

T : (Cw1×···×wn → C)× Cs1×···×sn → C(s1−w1+1)×···×(sn−wn+1)

which is defined as:

T (R,M) = M ′ where M ′
i1,...,in = R(M(i1...i1+w1−1),...,(in...in+wn−1)) (1.4)

Note that T (R,M) is defined for an M that is only a portion of the cells, and so
it does not wrap around toroidally. Instead, it returns a tensor that is smaller than
M in each dimension. Also note that the ellipses on the right side of the equation
are used in two different ways. Each element of the result comes from applying the
R function to only a portion of the M tensor, which includes those elements of M
whose first coordinate is in the range [i1, i1+w1− 1], and whose second coordinate
is in the range [i2, i2 + w2 − 1], and so on up to the nth coordinate being in the
range [in, in + wn − 1].

Definition 1.5. A linear additive energy function ( or energy function) is a function
f : Cs1×···×sn → R that assigns a real number to a window of size s1 × · · · × sn
within a cellular automaton.

Definition 1.6. The total energy etot : Cu1×···×un → R of a given state U of an
entire cellular automaton universe with u1 × · · · × un cells, with respect to a given
energy function f , is

etot(U) =
∑
W

f(UW ) (1.5)

where U is the universe state for a cellular automaton, W is the position of the
energy window within that universe, and UW is that window within the universe,
which wraps toroidally at the edges of the universe.

Definition 1.7. A conserved linear additive energy function (or a conserved func-
tion) for a given cellular automaton rule is an energy function that for a universe of
any size, and for any given state of that universe, will assign the same total energy
to that universe for both that state and its successor.

Definition 1.8. A trivial conserved linear additive energy function (or a trivial) is
an energy function that for a universe of any size, will assign the same total energy
to that universe regardless of its state. A nontrivial conserved linear additive energy
function (or a nontrivial) for a given cellular automaton rule is a conserved energy
function that is not trivial.
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Definition 1.9. Given n positive integers s1, . . . , sn defining the size of an n-
dimensional tensor, the set B(s1, . . . , sn) is the set of all tensors over C of that size.
This set is partitioned into two sets, Z(s1, . . . , sn), the zero-sided tensors, which
have at least one side that contains the origin element and is filled entirely with zero
elements, and Z̄(s1, . . . , sn), the non-zero-sided tensors, which do not have such a
side. The origin element is the element of the tensor at location (1, 1, . . . , 1).

B(s1, . . . , sn) = Cs1×···×sn (1.6)

Z(s1, . . . , sn) = {T ∈ B(s1, . . . , sn) | ∃i∀j∀sj Ts1,...,si−1,1,si+1,...,sn = 0} (1.7)

Z̄(s1, . . . , sn) = B(s1, . . . , sn) \ Z(s1, . . . , sn) (1.8)

So in 1 dimension, the zero-sided vectors are those whose with a 0 as the first
element. In 2 dimensions, the zero-sided matrices are those with a top row of all
zeros, or a leftmost column of all zeros, or both.

It is useful to define a matching function H that can be used in the construction
of various functions over these tensors. The function returns 1 iff two tensors have
elements that match, where the * symbol is treated as matching any color.

Definition 1.10. Given n-dimensional tensors over C∗, the function
H : Cs1×···×sn

∗ × Cs1×···×sn
∗ → {0, 1} is defined as

H(A,B) =


1 if ∀i∀si As1,...,sn = Bs1,...,sn

∨As1,...,sn = ∗
∨Bs1,...,sn = ∗

0 otherwise

(1.9)

Given an n-dimensional tensor, it is useful to unwrap it into a 1D string of char-
acters. This will be done in row major order. For matrices, this means the elements
will be read from left to right across the top row, then left to right across the sec-
ond row, and so on down to the bottom row. Tensors of other dimensionalities are
unwrapped similarly, with the last dimension changing most quickly, and the first
dimension changing most slowly. It is useful to have a function Vnum(T ) that un-
wraps the elements of tensor T , then converts the resulting string to an integer by
treating it as a number in base c, with the first element being the most significant
digit, and the last being the least significant.

Definition 1.11. An n-dimensional tensor A with elements in C can be converted
to an integer by the function Vnum : Cs1×···×sn → N, which treats the elements
of the tensor as digits base k, where the elements are taken in row major order,
treating the first as the least significant digit, and the last as the most significant.

Vnum(A) =

s1∑
i1=1

s2∑
i2=1

· · ·
sn∑

in=1

Ai1,i2,...,in

n∏
j=1

k(ij−1)
∏n

m=j+1 sm (1.10)

For this definition, the rightmost product is understood to be 1 for all cases where
the lower bound exceeds the upper.

Definition 1.12. An n-dimensional tensor with elements in C can be converted to
a binary vector by the function Vt : Cs1×···×sn → {0, 1}(ks1s2...sn ), which is defined
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as

Vt(M) = v where vi =

{
1 if i = Vnum(M) + 1

0 otherwise
(1.11)

The vector Vt(M) has one element for each possible color pattern for a tensor of
the same size as M . That vector will be all zeros, except for a 1 in the position
corresponding to the pattern M .

Definition 1.13. A function f : Cs1×···×sn → R can be converted to a real vector
with ks1s2...sn elements by the function V : (Cs1×···×sn → R) → Rks1s2...sn

, which
is defined as

V (f) =
∑

M∈B(s1,...,sn)

f(M) · Vt(M) (1.12)

This vector is a convenient way to represent an energy function. It completely
specifies the energy function, by listing the output of the function for every possible
input. We will define various classes of energy functions by simultaneous linear
equations, treating the elements of this vector as the variables.

Note that the energy function window is independent of the CA neighborhood.
Energy functions can be defined over regions different from the scope of the tran-
sition rule of the CA. Our work with 1D CAs in [1], for example, has identified
conserved energy functions with windows of size 1 × 5, 1 × 6 and larger, for CAs
that have neighborhoods of size 1× 3.

Definition 1.14. Given tensor M of size m1 × · · · ×mn, which is a region within
an n-dimensional universe, and given an energy window size of s = (s1, . . . , sn), a
vector representing the total energy of all energy windows that fit within M can be
found with the function

e : Nn × Cm1×···×mn → Nks1s2...sn

which is defined as

e(s,M) =

m1−s1+1∑
i1=1

m2−s2+1∑
i2=1

· · ·
mn−sn+1∑

in=1

Vt(Mi1...i1+s1−1,...,in...in+sn−1) (1.13)

The e(s,M) function slides the energy window to all possible positions that fit
entirely within the matrix M , and finds the energy at each position. It then sums
all the energies coming from identical patterns, and constructs a vector with the
total energy derived from each possible pattern. The sum of the elements of this
vector would simply be the total energy of M . But it is useful to maintain the
vector of separate values when generating sets of linear equations that define the
trivials, the nontrivials, or the conserved functions.

Definition 1.15. For a positive integer n, the function N : Nn → N is defined as

N(s1, . . . , sn) =
2n−1∑
b=1

k
∏

i si−bi(−1)1+
∑

i bi (1.14)

where bi is the ith bit of integer b written in binary, with bit 1 being least significant
and bit n being most.

In 1 and 2 dimensions this reduces to:

N(c) = kc−1 (1.15)
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N(r, c) = k(r−1)c + kr(c−1) − k(r−1)(c−1) (1.16)

It will be proved below that this gives the cardinality of many of the sets that
will be considered here. It equals the number of zero-sided tensors of a given size,
the number of trivials, and the number of unit complements. And when subtracted
from a simple power of 2, it yields the number of non-zero-sided tensors, the number
of equations defining the conserved functions, and the number of equations defining
the nontrivials. These terms are defined and the counts proved below.

Definition 1.16. In n dimensions, the seven transforms that operate on tensors
of size s1 × · · · × sn

PC :Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.17)

P∗ : N×Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.18)

Prot : N×Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.19)

PLD : N×Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.20)

PRD : N×Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.21)

PL :Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.22)

PR :Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.23)

are defined to be:

PC(M) = M ′ where M ′
i1,...,in =

{
0 if ∀j ij = ⌈sj/2⌉
Mi1,...,in otherwise

(1.24)

P∗(d,M) = M ′ where M ′
i1,...,in =

{
∗ if id = 1

Mi1,...,in otherwise
(1.25)

Prot(d,M) = M ′ where M ′
i1,...,in = Mi1,...,id−1, 1+(id mod sd) ,id+1,...,in (1.26)

PLD(d,M) =

{
P∗(d,M) if ∀j∀ij Mi1,...,id−1,1,id+1,...,in ∈ {0, ∗}
M otherwise

(1.27)

PRD(d,M) =

{
Prot(P∗(d,M)) if ∀j∀ij Mi1,...,id−1,1,id+1,...,in ∈ {0, ∗}
M otherwise

(1.28)

PL(M) = PLD(1, PLD(2, . . . PLD(n,M) . . . )) (1.29)

PR(M) = PRD(1, PRD(2, . . . PRD(n,M) . . . )) (1.30)

The function Prot(d,M) rotates the elements of tensor M along dimension d, so
that one side that included the origin moves to the opposite side. The function PC

sets the central element to zero. The function PL transforms a zero-sided tensor
by replacing the 0 elements on each all-zero side with * elements. And PR does
the same, then rotates it so each modified side moves to the opposite side. The
functions P∗, PLD, and PRD are only used here to define the other functions, and
won’t be used again.

The following gives three examples of PL and PR applied to zero-sided matrices
of size 3× 5. In each example, M is a zero-sided matrix, where the all-zero side is
on the left, top, and both, respectively:
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M =
0 1 1 1 1
0 0 1 0 1
0 0 1 0 0

PL(M) =
* 1 1 1 1
* 0 1 0 1
* 0 1 0 0

PR(M) =
1 1 1 1 *
0 1 0 1 *
0 1 0 0 *

(1.31)

M =
0 0 0 0 0
1 0 1 1 1
0 0 0 0 1

PL(M) =
* * * * *
1 0 1 1 1
0 0 0 0 1

PR(M) =
1 0 1 1 1
0 0 0 0 1
* * * * *

(1.32)

M =
0 0 0 0 0
0 1 0 0 0
0 1 0 1 0

PL(M) =
* * * * *
* 1 0 0 0
* 1 0 1 0

PR(M) =
1 0 0 0 *
1 0 1 0 *
* * * * *

(1.33)

Definition 1.17. The function PZ : Cs1×···×sn → C(2s1−1)×···×(2sn−1) takes a small
n-dimensional tensor and pads it with zero elements on many of its sides to create
a large n-dimensional tensor. In each dimension, if the small tensor was of size si
in that dimension, then the large tensor will be of size 2si − 1 in that dimension.
The zero elements are added in such a way that the last nonzero element in the
original tensor becomes the center element in the new tensor.

For example,

PZ

 1 0 1 1 0
0 1 0 0 0
0 0 0 0 0

 =

0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(1.34)

In this 2D example, the small matrix M is of size 3 × 5, and PZ(M) is of size
(2 ·3−1)×(2 ·5−1) = 5×9. Note that this M happens to have 4 nonzero elements,
arranged in a sort of V shape. If the elements of M are read in row major order
(i.e. left to right across the top row, then left to right on the second row, etc.),
then the last nonzero element to be read is the bottom of the V. The PZ function
pads with zeros in such a way as to yield a large matrix of the correct size, with
that last nonzero element in the exact center of the large matrix.

Definition 1.18. For a given tensor size s1 × · · · × sn, the set T is defined to be
the following set of functions

T (s1, . . . , sn) = {fM | M ∈ Z(s1 × · · · × sn)} (1.35)

where

fM (x) =

{
1 if M = 0

H(x, PL(M))−H(x, PR(M)) otherwise
(1.36)

2. Theoretical results

Proofs of the theorems below are provided in an appendix.

Theorem 2.1. The cardinality of the set Z(s1, . . . , sn) is N(s1, . . . , sn).
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Theorem 2.2. The cardinality of the set Z̄(s1, . . . , sn) is k
s1s2...sn −N(s1, . . . , sn).

Theorem 2.3. The set of coefficient vectors for one minimal set of linear equa-
tions that define the trivial conserved functions with energy windows of size s =
(s1, . . . , sn) is {e(s, PZ(A))− e(s, PC(PZ(A))) | A ∈ Z̄(s1, . . . , sn)}.

Theorem 2.4. The set of coefficient vectors for one set of linear equations that
defines the conserved functions with energy windows of size s = (s1, . . . , sn) for
cellular automaton rule R with neighborhood of size w = (w1, . . . , wn) is

{e(s, PZ(A))−e(s, PC(PZ(A))− e(s, T (R,PZ(A))) + e(s, T (R,PC(PZ(A))))

| A ∈ Z̄(s1 + w1 − 1, . . . , sn + wn − 1)}

Theorem 2.5. The set T (s1, . . . , sn) is a basis set for the space of all trivial addi-
tive conserved functions with energy windows of size s1 × · · · × sn.

Theorem 2.6. A complement of the coefficient vectors for the equations defining
the trivials for energy windows of size s1×, . . . ,×sn is {Vt(M) | M ∈ Z}.

Note that by the definition of complements, this implies that when searching
for conserved functions, without loss of generality we can constrain the energy
functions to assign an energy of 0 to any window that is a zero-sided tensor. This
corresponds to deleting certain columns in the matrix that defines the conserved
functions. After that deletion, there will be solutions to those equations if and only
if nontrivials exist. If such solutions do exist, then those solutions are guaranteed
to be nontrivial conserved functions, and the union of those solutions with the
trivials will span the space of conserved functions. This allows faster searches for
nontrivials.

Figure 1 summarizes all the theorems of this paper, giving four examples of
the M matrix for each concept. Figure 2 applies the ideas of this paper to the
results of [1] and [3], expressing the basis functions as a linear sum of the matching
H-functions of Definition 1.10.
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Energy window matrix
Size: r × c
Count: krc

10010
00000
00100

01010
10101
01010

11111
11111
11111

00000
00000
00000

Zero-sided matrix
Size: r × c
Count:
N(r, c) =k

(r−1)c
+ k

r(c−1)

−k
(r−1)(c−1)

01111
00101
00100

00000
10111
00001

00000
01000
01010

00000
00000
00000

Unit complement function
Size: r × c
f(x) = H(x,M)

01111
00101
00100

00000
10111
00001

00000
01000
01010

00000
00000
00000

Trivial conserved function
Size: r × c
f(x) = H(x,M) − H(x,M

′
)

M =

*1111
*0101
*0100

M
′
=

1111*
0101*
0100*

M =
*****
10111
00001

M
′
=

10111
00001
*****

M =

*****
*1000
*1010

M
′
=

1000*
1010*
*****

f(x) = 1

Non-zero-sided matrix
Size: r × c
Count: krc − N(r, c)

01000
10000
10001

10000
11000
00000

10111
00000
00000

10000
00000
00000

Equations defining the
trivial conserved functions
Size: (2r − 1) × (2c − 1)
0 = e(M) − e(M ′′)

010000000
100000000
100010000
000000000
000000000

000000000
000100000
000110000
000000000
000000000

000000000
000000000
101110000
000000000
000000000

000000000
000000000
000010000
000000000
000000000

Non-zero-sided matrix
Size: (r + 2) × (c + 2)
Count:
k(r+2)(c+2) − N(r + 2, c + 2)

0000101
0000010
1000000
1000000
0000010

1000000
0000011
0000001
0100000
0000000

1000000
0000000
0000000
1000000
1000000

1000000
0000000
0000000
0000000
0000000

Equations defining
the conserved functions
Size: (2r + 3) × (2c + 3)
0 =e(M) − e(M

′
)

−e(s(M)) + e(s(M
′
))

0000010100000
0000001000000
0100000000000
0100000000000
0000001000000
0000000000000
0000000000000
0000000000000
0000000000000

0000000000000
0000010000000
0000000000110
0000000000010
0000001000000
0000000000000
0000000000000
0000000000000
0000000000000

0000001000000
0000000000000
0000000000000
0000001000000
0000001000000
0000000000000
0000000000000
0000000000000
0000000000000

0000000000000
0000000000000
0000000000000
0000000000000
0000001000000
0000000000000
0000000000000
0000000000000
0000000000000

Figure 1. Summary of the main theoretical results of this paper,
with four examples of each concept. The proofs are for arbitrary
dimensions, neighborhood sizes, and number of colors, but the fig-
ure shows only 2D examples, for a CA with a 3× 3 neighborhood,
and k = 2 colors. In each case, M ′ is M with the central bit set
to 0. For the equations, the large matrix is formed by padding
the small matrix with zeros such that the last 1 bit ends up in the
center of the large matrix (where “last” is the last 1 found when
traversing the elements in row major order). In each of the four
sections, the listed concepts all have the same count. For example,
the number of zero-sided matrices of a given size equals the number
of unit complement functions, which equals the number of trivials.
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CA Basis

170
184
204

f(x) =H(x, 1 )

12
14
15
34
35
42
43
51
140
142

f(x) =H(x, 10 )

200 f(x) =H(x, 11 )

2
3
172

f(x) =H(x, 100 )

4 f(x) =H(x, 010 )

10 f(x) =H(x, 1*0 )

56
76

f(x) = H(x, *10 )
+H(x, 110 )

138 f(x) = H(x, 100 )
+H(x, 11* )

1 f(x) =H(x, 1000 )

11
27

f(x) = H(x, 100* )
+H(x, 1011 )

29 f(x) = H(x, *100 )
+H(x, 1100 )
+H(x, 101* )

38
46

f(x) = H(x, 100* )
+H(x, 1101 )

72 f(x) =H(x, 0110 )

5 f1(x) = H(x, 010*1 )
+2H(x, 10*0* )
− H(x, 1010* )
+ H(x, 10010 )

f2(x) = H(x, 1*0*0 )

19 f(x) = H(x, 10100 )
+H(x, 1100* )

CABasis

24 f(x) = H(x, 1000* )
+H(x, 10010 )
+H(x, 1101* )
+H(x, 11100 )

36 f(x) = H(x, 00100 )
+H(x, 11011 )

108f(x) = H(x, *0100 )
+ H(x, 10100 )
+ H(x, 10111 )
+2H(x, 1100* )
+ H(x, 11101 )

132f(x) =H(x, 01010 )

23 f(x) = H(x, 001100 )
+H(x, 110011 )

50
178

f(x) = H(x, 011001 )
+H(x, 100110 )

77 f1(x) =H(x, 011001 )

f2(x) =H(x, 100110 )

232f1(x) = H(x, 011000 )
−H(x, 101100 )
+H(x, 110010 )
−H(x, 111001 )

f2(x) = H(x, 110011 )

44 f(x) = H(x, 1000**** )
+H(x, 101001** )
+H(x, 10101101 )
+H(x, 1011101* )
+H(x, 11001*** )
+H(x, 111101** )

73 f(x) =H(x, 01100110 )

7 f(x) = H(x, 00011000* )
+H(x, 000110010 )
+H(x, *01100011 )
+H(x, *11001011 )
+H(x, 11100011* )

CABasis

33 f(x) = H(x, 0001000100** )
− H(x, 00010001001* )
+2H(x, 000100011*** )
− H(x, 0001000111** )
− H(x, 00010001100* )
− H(x, 000100011010 )
+ H(x, 000101100011 )
+ H(x, 000101110111 )
+ H(x, 0001101001** )
+2H(x, *00110110000 )
− H(x, 100110110000 )
+ H(x, 00011011001* )
+ H(x, 00011011100* )
+ H(x, 000110111010 )
+ H(x, 0001101111** )
+ H(x, 001000110100 )
+ H(x, 0*1011000100 )
+ H(x, 0*1011101001 )
+ H(x, 0*1011101100 )
+3H(x, 00110110001* )
− H(x, 001101100010 )
+ H(x, 001101110100 )
+3H(x, 00110111011* )
− H(x, 001101110110 )
+ H(x, 10010001000* )
+ H(x, 100100011011 )
+2H(x, 1001011000** )
− H(x, 10010110000* )
− H(x, 100101100010 )
+ H(x, 100101110100 )
+2H(x, 10010111011* )
− H(x, 100101110110 )
− H(x, 100110110001 )
− H(x, 100110111011 )
+ H(x, 101101100011 )
+ H(x, 101101110111 )
+ H(x, 110001000*** )
+ H(x, 11000110100* )
+ H(x, 1100011011** )
+2H(x, 111011000*** )
− H(x, 1110110000** )
− H(x, 111011000101 )
+2H(x, 11101110100* )
− H(x, 111011101000 )
+2H(x, 1110111011** )
− H(x, 111011101101 )

164f(x) = H(x, 00100100100** )
+H(x, 0110110110110 )

94 f(x) = H(x, 01110010111101 )
+H(x, 1010010111101* )
+H(x, 1011110100101* )
+H(x, 10111101001110 )

104f1(x) = H(x, 00101011010100 )
+H(x, 001011110100** )
+H(x, 00110011000*** )
+H(x, 001100110010** )
+H(x, 00110011001101 )
+H(x, 0011001100111* )

f2(x) = H(x, 00110011001100 )

Figure 2. 1D Basis functions. For each CA, this lists the
lowest-order nontrivial conserved functions. The given functions,
combined with the trivials, constitute a basis set for the space of
all conserved functions for that CA. The table contains all 88 of
the non-isomorphic primitive CAs, except those that are known
to have no nontrivials (0,8,32,40,128,136,160,168,60,30,90,154),
and those that have no known nontrivials and have been proved
to have none at least up to and including size 16 energy windows
(106,150,6,9,13,18,22,25,26,28,37,41,45,54,57,58,62,74,78,105,110,
122,126,130,134,146,152,156,162).
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3. Computational results

The challenge in identifying cellular automata with a nontrivial additive energy
conservation function (hereafter referred to as a ”nontrivial”) is the enumeration
of the trivial functions and their elimination from the solution space. The actual
calculation of the nontrivials can then be reduced to the calculation of the null
space of the system of corresponding state space equations. Thus the theorems and
definitions of the previous section may be used as the basis for computational iden-
tification of cellular automata with nontrivials of various orders. Computationally,
this proceeds as follows:

1) Choose a CA and energy window size (s1, s2).
2) For all possible matrices M given by Theorem 2.4, generate the corresponding

state space equations.
3) To remove the trivials from the solution space, delete the columns associated

with the zero-sided tensors as determined by Theorem 2.6. This has the additional
benefit of significantly reducing the size of the energy vectors and, therefore, the
state space matrix as a whole.

4) Determine the rank of the resulting matrix. If it is full rank, the system of
equations has no solution, and therefore no nontrivial exists for the given CA and
window size. If the matrix is rank-deficient, a nontrivial exists. It is completely
characterized by the basis vectors that are the columns of the matrixs null space.

In [1], we gave a complete taxonomy of binary nontrivials for 1D cellular au-
tomata up for energy windows up to size 16. Using the definitions and theorems
previously presented, we now extended these results to binary 2D automata, for
energy windows up to size 9.

There are a total of kk
9

k-colored 2D cellular automata (ignoring isomorphic
entries). This number is so large that any investigation other than a random sam-
pling is effectively impossible. Accordingly, drawing substantive conclusions about
unrestricted 2D cellular automata seems to the authors extraordinarily difficult. To
reduce the scope of the problem and make a more complete investigation possible,
we consider only outer totalistic CAs: Those for which the next state of the cell is a
function only of the total number of colors of a given type in the region surrounding
the cell and the cell itself. For binary CAs, this means that only the total number
of 1’s in a cell’s neighborhood (including its own value) must to be calculated to
determine the cell’s next state. Conway’s Game of Life is a cellular automaton of
this type.

Restricting the search space to outer totalistic automata significantly reduces
the size of the problem. For a 2D CA, the neighborhood is of size 9, and therefore
the total number of occupied cells in a cell’s neighborhood ranges from 0 through 8.
For binary automata, one of four outcomes are possible: (S)ame, (B)irth, (D)eath,
and (F)lip (Flip changes 0 to 1 and vice versa). Thus any outer totalistic CA can
be represented as a character string of the form S,B,D,F. Using this notation, if we
count the neighbors from 0 to 8 from left to right, Conways Game of Life would be
written as ”DDSBDDDDD”. We refer to this description at the CA’s rule vector.
Note that the use of symbols S and F permits the incorporation of the central state
into the transition rule.

It is known that renumbering the colors of a CA in reverse order and changing
the outcomes correspondingly produces an CA identical to the original, up to iso-
morphism. Using the proposed notation, this corresponds to reversing the order of
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Energy window Energy window
height (s1) width (s2) ⌈log2 rows⌉ ⌈log2 cols⌉

1 2 16 1

1 3 19 2

1 4 23 3

2 2 20 4

1 5 26 4

1 6 29 5

2 3 25 6

1 7 32 6

1 8 35 7

2 4 29 8

1 9 39 8

3 3 30 9

Table 1. State matrix sizes for various energy windows

the letters, swapping S with F, and swapping B with D. The rule vector of every
CA can be manipulated in this way to produce a unique and distinct isomorph, so
the total number of unique totalistic binary CAs is 49/2 = 217. This is considerably
smaller than the non-totalistic case.

The definitions and theorems in this paper give the dimensions of the matrices
to be analyzed as a function of the energy window (independent of the CA being
analyzed). We show the matrix sizes for some 2D examples in Table 1.

Column three shows the ceiling of the log base 2 of the maximum number of
energy vectors needed to determine the existence of a nontrivial. Column four
shows the number of entries in each vector. This is given by the total number of
possible energy function values (2s1s2) minus the number of zero-sided tensors given
by Definition 1.15.

Because these matrices have far more rows than columns, we expect almost all
of them to be full rank, and therefore few nontrivial conservation functions should
exist over the range of cellular automata. Since full rank can be determined very
quickly while rank-deficiency cannot be known until all the possible state space
vectors given by Theorem 2.3 have been examined for linear independence, it would
be inefficient to build the full state space matrix for each CA and then calculate
its rank. Instead, we sift the sands of cellular automata through a three-stage
computational sieve.

The first stage uses a ”quick and dirty” algorithm to discard automata with no
nontrivials. This eliminates over 99% of the candidates. The second stage takes
automata that have passed the first stage and performs a little more work to try and
drive the set of state space matrices to full rank. This eliminates about another 90%
of the candidates it analyzes. The third stage operates only on automata that have
passed the first two stages, performing exact arithmetic using all the optimizations
of Theorem 2.3 to determine whether or not a given CA has a nontrivial conservation
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function. If it does, its basis is calculated and reported. Each stage is implemented
in MATLAB.

In stage I, we compute the energy vector of Definition 1.14 for one tensor at a
time, attempting to add it to an existing energy vector set via Gaussian elimination
to ensure that the rows in the state space matrix at any time are always linearly
independent. Before such addition, however, we delete the columns corresponding
to the zero-sided tensors for the indicated energy window. The total number of
deleted columns is given by Definition 1.15. None of the optimizations discussed
in the proof of Theorem 2.3 are performed at this stage. Instead, universe states
are generated randomly, the energy vectors of their corresponding tensors are cal-
culated, and Gaussian elimination is performed on each vector relative to those
energy vectors already admitted into the state space matrix. When the number of
linearly independent energy vectors is equal to the number of columns (the num-
ber of possible energy function values minus the number of zero-sided tensors), full
rank has been achieved, and the CA/energy window pair under test is known not
to correspond to a nontrivial conservation function.

Since states are generated randomly in this stage, as opposed to exhaustive
enumeration of the appropriate tensors as given by Theorem 2.3, the number of
states N to try before giving up on the possibility of reaching full rank is a user-
definable parameter. Empirically, we have found that setting N at 32x the maximum
rank of the matrix gives a good tradeoff between quick computation on the one hand
and admitting too many false positives on the other.

During this stage, all arithmetic is performed modulo a small prime, to eliminate
the possibility of roundoff error or overflow. If full rank is reached, the matrix would
be full rank in exact arithmetic as well, so the answer is correct. If full rank is not
reached within the indicated time window, the matrix may or may not be rank-
deficient, so the CA is marked as a candidate for stage II computation.

In stage II, candidate CA/window pairs that pass through the first stage are
subject to repeated random state generation with a larger value of N for multiple
attempts. No other optimizations are performed at this time. If no full rank matrix
is produced (i.e. no linearly independent energy vector set of the cardinality given
by Definition 1.14 is found), the pair is marked for analysis by stage III.

Stage III computation employs on-the-fly Gaussian elimination for one-at-a-time
energy vector generation, similar to the first two stages, but using double precision
arithmetic and enumerating the state space exactly as described in the proof of
Theorem 2.3. To keep the computations from overflowing, vectors are reduced
modulo the GCD of all their nonzero entries during this process, which means this
stage is the most computationally intensive. If Gaussian elimination on the entire
set of energy vectors does not produce a linearly independent set of Definition 1.14
cardinality, then constructed state space matrix has a null space. That null space
is calculated, and reported as the basis for all nontrivial conservation functions for
that particular CA/window combination.

To guard against the possibility of numerical error, the largest value observed
during stage III calculation is tracked and reported, to ensure that any possibility of
overflow or loss of precision will be detected. For all calculations reported here, this
maximum value has always been well below that which could induce error in double
precision arithmetic. So we are confident our results are correct. Nonetheless, as
an added safety check, we have implemented code which accepts as input a CA, an
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energy window, and a stage III basis set reported as characterizing a nontrivial. It
tests each vector in the basis set over large numbers of randomly selected states by
evaluating the energy function through brute force dot product calculation. In all
cases, the resulting functions reported by stage III were conserved.

Table 2 shows the results of our computations for all outer totalistic binary 2D
cellular automata up to isomorphism, for all energy windows up to order 9. It
extends [1] to give a complete taxonomy of conservation functions for all automata
of this type. Figures 3 and 4 are similar to Figure 2, extended to two dimensions.
Figure 5 summarizes our current knowledge of 1D conservation functions.

The first three columns of Table 2 are all different ways of identifying the same
automaton. The first column is the decimal integer represented by a CAs rule
vector, obtained by treating the symbols S,B,D,F as the integers 0,1,2,3 respectively,
and viewing the rule vector as a number in base 4 with the most significant digit on
the right. The second column shows the CA rule using the notation in [8]. Column
three is the CA’s rule vector.

Columns four through six describe the nontrivial conservation function found.
Column four shows the dimensions of the energy window at which the first nontrivial
was discovered. Column five shows the number of basis vectors in the null space
of the CA’s state matrix for an energy window of the indicated size. Column six
contains, where appropriate, comments describing the conservation function. A
blank entry in this column means that either no simple description exists or that
describing the pattern would be too complex to fit within the indicated space.

Symmetry arguments will show that analogous conservation functions for any
m × n window can also be found for one that is n × m. Thus the only energy
windows examined were those that were at least as wide as they were tall.
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CA# Rule rule vec (num neighbors) min basis comments

NCF size

0 1 2 3 4 5 6 7 8

0 S0123456789 S S S S S S S S S 1x1 n/a identity, conserves all

2 S12345678 D S S S S S S S S 1x2 1 conserves [11] pairs

8 S02345678 S D S S S S S S S 2x2 5 conserves 2x2 patterns

with ≥ 3 1’s

10 S2345678 D D S S S S S S S 2x2 5 identical to 8

21 B012/S012345678 B B B S S S S S S 3x3 1

32 S01345678 S S D S S S S S S 2x2 1 conserves 2x2 pattern

with all 1’s

34 S1345678 D S D S S S S S S 2x2 1 identical to 32

40 S0345678 S D D S S S S S S 2x2 1 identical to 32

42 S345678 D D D S S S S S S 2x2 1 identical to 32

16386 B7/S12345678 D S S S S S S B S 2x2 4

16387 B07/S12345678 F S S S S S S B S 3x3 11

21845 B01234567/S8 B B B B B B B B S 3x3 1 conserves ring of 1’s

around a 0

65532 B1234567/S8 S F F F F F F F S 2x3 1

65533 B01234567/S08 B F F F F F F F S 2x3 1 identical to 65532

65534 B1234567/S8 D F F F F F F F S 2x3 1 identical to 65532

65535 B01234567/S8 F F F F F F F F S 2x3 1 identical to 65532

65537 B08/S012345678 B S S S S S S S B 2x3 7

65538 B8/S12345678 D S S S S S S S B 2x2 8

65539 B08/S12345678 F S S S S S S S B 2x3 7 identical to 65537

65541 B018/S012345678 B B S S S S S S B 3x3 1 conserves [001 011 010]

65545 B08/S234567 B D S S S S S S B 2x3 1 conserves the difference
between [101 111] and
[111 101]

65546 B8/S234567 D D S S S S S S B 2x2 4 conserves 2x2 patterns

with ≥ 3 1’s

65547 B08/S2345678 F D S S S S S S B 2x3 1 identical to 65545

65549 B018/S02345678 B F S S S S S S B 3x3 1 identical to 65541

81921 B078/S012345678 B S S S S S S B B 2x3 1

81923 B078/S12345678 F S S S S S S B B 2x3 1 identical to 81921

131069 B012345678/S08 B F F F F F F F B 2x3 1 identical to 65532

131070 B12345678/S8 D F F F F F F F B 2x3 1 identical to 65532

131071 B012345678/S8 F F F F F F F F B 2x3 1 identical to 65532

131073 B0/S01234567 B S S S S S S S D 2x3 2

131075 B0/S1234567 F S S S S S S S D 2x3 2 identical to 131073

131077 B01/S01234567 B B S S S S S S D 3x3 1 identical to 65541

131081 B0/S0234567 B D S S S S S S D 3x3 9

131083 B0/S234567 F D S S S S S S D 3x3 9 identical to 131081

131085 B01/S234567 B F S S S S S S D 3x3 1 identical to 65541

147459 B07/S1234567 F S S S S S S B D 3x3 9

163483 B0/S123456 F S S S S S S D D 3x3 1 conserves [011 100 101]

180227 B07/S123456 F S S S S S S F D 3x3 1 identical to 163843

196605 B01234567/S0 B F F F F F F F D 2x2 4

196607 B01234567 F F F F F F F F D 2x2 4 Identical to 196605

196611 B08/S1234567 F S S S S S S S F 2x3 2 Identical to 131073

196619 B08/S234567 F D S S S S S S F 3x3 9 Identical to 131081

262143 B012345678 F F F F F F F F F 1x2 1 Conserves [10] pairs

Table 2. Conservation functions of order ≤ 9 for 2D CA’s
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CA Basis

174762 f(x) =H(x, 1 )

87381 f(x) =H(x, 10 )

174760 f(x) =H(x, 11 )

174720
174722
174728
174730

f(x) =H(x, 11
11

)

21845
21847

f1(x) = H(x, 01
1*

)

−H(x, 11
0*

)

f2(x) = H(x, 01
1*

)

−H(x, 10
1*

)

f3(x) = H(x, 01
11

)

−H(x, 1*
10

)

−H(x, 11
00

)

f4(x) = H(x, 01
10

)

+H(x, 10
01

)

191144 f1(x) = H(x, 00
01

)

− H(x, 01
00

)

f2(x) = H(x, 00
01

)

− H(x, 00
10

)

f3(x) = H(x, 01
11

)

− H(x, 11
10

)

f4(x) = H(x, 01
1*

)

+ H(x, *1
11

)

− H(x, 10
01

)

+2H(x, 10
10

)

+2H(x, 11
00

)

CA Basis

240288f1(x) = H(x, 01
11

)

− H(x, 11
10

)

f2(x) = H(x, 01
11

)

− H(x, 11
01

)

f3(x) = H(x, 01
11

)

− H(x, 10
11

)

f4(x) = H(x, *1
11

)

+3H(x, 01
11

)

240296f1(x) = H(x, 01
11

)

− H(x, 11
10

)

f2(x) = H(x, 01
11

)

− H(x, 11
01

)

f3(x) = H(x, 01
11

)

− H(x, 10
11

)

f4(x) = H(x, 11
00

)

f5(x) = H(x, 10
10

)

f6(x) = H(x, 10
01

)

f7(x) = H(x, *1
11

)

+3H(x, 01
11

)

f8(x) = H(x, 01
10

)

CA Basis

174752
174754

f1(x) =H(x, 11
11

)

f2(x) =H(x, 11
10

)

f3(x) =H(x, 11
01

)

f4(x) =H(x, 10
11

)

f5(x) =H(x, 01
11

)

218453
218452
218455
152917
152916
152919
152918

f(x) = H(x, 010
101

)

+H(x, 101
010

)

256681
256683
191145

f(x) = H(x, 00*
101

)

+H(x, 100
101

)

−H(x, 101
00*

)

−H(x, 101
100

)

240289
240291

f(x) = H(x, 101
111

)

−H(x, 111
101

)

109225
43689
43691

f1(x) =H(x, 101
010

)

f2(x) =H(x, 010
101

)

240297
240299

f1(x) = H(x, 101
111

)

−H(x, 111
101

)

f2(x) = H(x, 110
101

)

f3(x) = H(x, 101
110

)

f4(x) = H(x, 101
011

)

f5(x) = H(x, 101
010

)

f6(x) = H(x, 011
101

)

f7(x) = H(x, 010
101

)

Figure 3. 2D Basis functions. For each CA, this lists the lowest-
order nontrivial conserved functions. The given functions, com-
bined with the trivials, constitute a basis set for the space of all
conserved functions for that CA. The table contains all of the non-
isomorphic, 2-color, 3× 3 neighborhood, outer totalistic CAs that
have nontrivials of size 2 × 3 or smaller (the 3 × 3 nontrivials are
shown in Figure 4).
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CA Basis

109223
109231
43687
43695
240295
240303

f(x) =H(x, 010
101
010

)

196607 f(x) =H(x, 111
101
111

)

125609
125611
60075

f1(x) =H(x, 101
010
101

)

f2(x) =H(x, 101
010
100

)

f3(x) =H(x, 101
010
001

)

f4(x) =H(x, 101
010
000

)

f5(x) =H(x, 100
010
101

)

f6(x) =H(x, 100
010
100

)

f7(x) =H(x, 001
010
101

)

f8(x) =H(x, 001
010
001

)

f9(x) =H(x, 000
010
101

)

60073 f1(x) =H(x, *0*
010
101

)

f2(x) =H(x, *01
010
*01

)

f3(x) =H(x, 101
010
101

)

f4(x) =H(x, 101
010
100

)

f5(x) =H(x, 101
010
001

)

f6(x) =H(x, 101
010
000

)

f7(x) =H(x, 100
010
101

)

f8(x) =H(x, 100
010
100

)

f9(x) =H(x, 001
010
101

)

CA Basis

174783f(x) = H(x, 000
001
001

)+H(x, 000
001
010

)+ H(x, 000
*01
111

)− H(x, 000
100
011

)

− H(x, 00*
100
10*

)−H(x, 000
100
110

)+ H(x, *00
101
100

)− H(x, 001
000
101

)

− H(x, 001
00*
110

)+H(x, 001
*0*
111

)− H(x, 001
001
0*0

) − 2H(x, 001
001
100

)

− H(x, 001
100
001

)−H(x, 001
10*
*10

)− H(x, 0*1
100
100

) − 2H(x, 001
101
000

)

+2H(x, 01*
000
010

)−H(x, 011
000
0*0

)− H(x, 010
000
101

)− H(x, *10
001
100

)

− H(x, *1*
*01
110

)−H(x, 010
*10
*10

)− H(x, 010
011
*1*

)− H(x, 01*
10*
00*

)

− H(x, 010
100
001

)−H(x, 01*
100
011

)− H(x, 01*
1*0
10*

)− H(x, 010
100
10*

)

− H(x, 01*
100
100

)−H(x, 011
1*0
*00

)− H(x, 010
101
000

)− H(x, 01*
101
01*

)

− H(x, *1*
101
101

)−H(x, 01*
110
00*

)− H(x, 011
0*0
100

)− H(x, 011
000
100

)

− H(x, 011
010
000

)−H(x, *11
011
*10

)− H(x, 011
100
000

)+ H(x, 011
101
100

)

+ H(x, 011
111
*11

)−H(x, 100
000
011

) − 2H(x, 1**
00*
10*

)− H(x, 100
000
101

)

− H(x, 100
000
11*

)−H(x, 10*
*0*
110

)− H(x, 101
*0*
*10

)− H(x, 10*
001
100

)

− H(x, 101
001
*00

)−H(x, 101
*01
000

)+ H(x, 100
100
000

)− H(x, 1**
100
100

)

− H(x, 10*
101
000

)−H(x, 101
000
001

)− H(x, 101
000
10*

) − 2H(x, 101
100
***

)

− H(x, 101
100
*0*

)+H(x, 110
000
000

)− H(x, 11*
000
011

)− H(x, 111
00*
1**

)

− H(x, 110
000
10*

)+H(x, 110
*01
001

)− H(x, 11*
001
01*

)− H(x, 11*
01*
00*

)

− H(x, 111
01*
*0*

)+H(x, 110
010
*11

)+ H(x, 110
100
010

) − 2H(x, 11*
100
10*

)

− H(x, 111
**0
*00

)−H(x, 111
*00
*00

)− H(x, 111
101
101

)+ H(x, 110
110
011

)

− H(x, 110
110
110

)+H(x, 110
111
0**

)+ H(x, 110
111
10*

)− H(x, 111
00*
01*

)

− H(x, 111
100
011

)−H(x, 111
10*
11*

)− H(x, 111
101
01*

)− H(x, 111
110
00*

)

− H(x, 111
110
1**

)+H(x, 111
111
011

)− H(x, 111
111
110

)

Figure 4. 2D Basis functions (continued). These are the 3 × 3
nontrivials, continued from figure 3.
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Order CA(isomorphs) Rule 1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

∞ 0(255) 0 0 0 0 0 0 0 0 0
∞ 8(64,239,253) Xyz 0 0 0 0 1 0 0 0
∞ 30(86,135,149) X+YZ 0 0 0 1 1 1 1 0
∞ 32(251) xYz 0 0 1 0 0 0 0 0
∞ 40(96,235,249) xz+yz 0 0 1 0 1 0 0 0
∞ 60(102,153,195) x+y 0 0 1 1 1 1 0 0
∞ 90(165) x+z 0 1 0 1 1 0 1 0
∞ 106(120,169,225) xy+z 0 1 1 0 1 0 1 0
∞ 128(254) xyz 1 0 0 0 0 0 0 0
∞ 136(192,238,252) yz 1 0 0 0 1 0 0 0
∞ 150 x+y+z 1 0 0 1 0 1 1 0
∞ 154(166,180,210) xY+z 1 0 0 1 1 0 1 0
∞ 160(250) xz 1 0 1 0 0 0 0 0
∞ 168(224,234,248) XYz+z 1 0 1 0 1 0 0 0
>16 6(20,159,215) Xy+Xz 0 0 0 0 0 1 1 0
>16 9(65,111,125) Xy+XZ 0 0 0 0 1 0 0 1
>16 13(69,79,93) X+XYz 0 0 0 0 1 1 0 1
>16 18(183) xY+Yz 0 0 0 1 0 0 1 0
>16 22(151) X+Xyz+YZ 0 0 0 1 0 1 1 0
>16 25(61,67,103) Xyz+YZ 0 0 0 1 1 0 0 1
>16 26(82,167,181) xYZ+Xz 0 0 0 1 1 0 1 0
>16 28(70,157,199) Xy+xYZ 0 0 0 1 1 1 0 0
>16 37(91) xYz+XZ 0 0 1 0 0 1 0 1
>16 41(97,107,121) X+XyZ+Yz 0 0 1 0 1 0 0 1
>16 45(75,89,101) X+Yz 0 0 1 0 1 1 0 1
>16 54(147) XZ+Y 0 0 1 1 0 1 1 0
>16 57(99) Xz+Y 0 0 1 1 1 0 0 1
>16 58(114,163,177) xY+Xz 0 0 1 1 1 0 1 0
>16 62(118,131,145) x+XYz+y 0 0 1 1 1 1 1 0
>16 74(88,173,229) xyZ+Xz 0 1 0 0 1 0 1 0
>16 78(92,141,197) Xz+yZ 0 1 0 0 1 1 1 0
>16 105 x+y+Z 0 1 1 0 1 0 0 1
>16 110(124,137,193) Xyz+y+z 0 1 1 0 1 1 1 0
>16 122(161) x+xYz+z 0 1 1 1 1 0 1 0
>16 126(129) xY+Xz+yZ 0 1 1 1 1 1 1 0
>16 130(144,190,246) xz+Yz 1 0 0 0 0 0 1 0
>16 134(148,158,214) X+XYZ+yz 1 0 0 0 0 1 1 0
>16 146(182) x+xyZ+Yz 1 0 0 1 0 0 1 0
>16 152(188,194,230) xYZ+yz 1 0 0 1 1 0 0 0
>16 156(198) xZ+y 1 0 0 1 1 1 0 0
>16 162(176,186,242) Xyz+z 1 0 1 0 0 0 1 0
1 170(240) z 1 0 1 0 1 0 1 0
1 184(226) xY+yz 1 0 1 1 1 0 0 0
1 204 y 1 1 0 0 1 1 0 0

Order CA(isomorphs) Rule 1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

2 12(68,207,221) Xy 0 0 0 0 1 1 0 0
2 14(84,143,213) X+XYZ 0 0 0 0 1 1 1 0
2 15(85) X 0 0 0 0 1 1 1 1
2 34(48,187,243) Yz 0 0 1 0 0 0 1 0
2 35(49,59,115) xYZ+Y 0 0 1 0 0 0 1 1
2 42(112,171,241) xyz+z 0 0 1 0 1 0 1 0
2 43(113) xY+Xz+YZ 0 0 1 0 1 0 1 1
2 51 Y 0 0 1 1 0 0 1 1
2 140(196,206,220) xyZ+y 1 0 0 0 1 1 0 0
2 142(212) xy+Xz+yZ 1 0 0 0 1 1 1 0
2 200(236) XyZ+y 1 1 0 0 1 0 0 0
3 2(16,191,247) XYz 0 0 0 0 0 0 1 0
3 3(17,63,119) XY 0 0 0 0 0 0 1 1
3 4(223) XyZ 0 0 0 0 0 1 0 0
3 10(80,175,245) Xz 0 0 0 0 1 0 1 0
3 56(98,185,227) xY+Xyz 0 0 1 1 1 0 0 0
3 76(205) xyz+y 0 1 0 0 1 1 0 0
3 138(174,208,244) xYz+z 1 0 0 0 1 0 1 0
3 172(202,216,228) Xy+xz 1 0 1 0 1 1 0 0
4 1(127) XYZ 0 0 0 0 0 0 0 1
4 11(47,81,117) X+XyZ 0 0 0 0 1 0 1 1
4 27(39,53,83) Xz+YZ 0 0 0 1 1 0 1 1
4 29(71) Xy+YZ 0 0 0 1 1 1 0 1
4 38(52,155,211) XyZ+Yz 0 0 1 0 0 1 1 0
4 46(116,139,209) Xy+Yz 0 0 1 0 1 1 1 0
4 72(237) xy+yz 0 1 0 0 1 0 0 0
5 5(95) XZ 0 0 0 0 0 1 0 1
5 19(55) xYz+Y 0 0 0 1 0 0 1 1
5 24(66,189,231) xYZ+Xyz 0 0 0 1 1 0 0 0
5 36(219) xYz+XyZ 0 0 1 0 0 1 0 0
5 108(201) xz+y 0 1 1 0 1 1 0 0
5 132(222) xy+yZ 1 0 0 0 0 1 0 0
6 23 xY+XZ+Yz 0 0 0 1 0 1 1 1
6 50(179) XYZ+Y 0 0 1 1 0 0 1 0
6 77 xy+XZ+yz 0 1 0 0 1 1 0 1
6 178 xy+xZ+Yz 1 0 1 1 0 0 1 0
6 232 xy+xz+yz 1 1 1 0 1 0 0 0
8 44(100,203,217) Xy+xYz 0 0 1 0 1 1 0 0
8 73(109) X+XYz+yZ 0 1 0 0 1 0 0 1
9 7(21,31,87) X+Xyz 0 0 0 0 0 1 1 1
12 33(123) xY+YZ 0 0 1 0 0 0 0 1
13 164(218) XyZ+xz 1 0 1 0 0 1 0 0
14 94(133) x+XyZ+z 0 1 0 1 1 1 1 0
14 104(233) x+xYZ+yz 0 1 1 0 1 0 0 0

Figure 5. Summary of results for the primitive CAs (1D, 2-color,
neighborhood of 3 cells). In each half of the table, the first column
gives the energy window size for the smallest nontrivial. A value
of ∞ indicates that it is known no nontrivial can exist. A value of
> 16 indicates that no nontrivial exists with energy window of size
16 or below. The next column has the CA name, and the names
of the isomorphic CAs. The next is the formula for the successor
function, where cells have state 0 or 1, three consecutive cells are
called x, y, z (with capitalized inverses, so X=1-x etc.), and the
formula modulo 2 gives the new state for y. Finally, the successor
function is shown graphically, giving the new state as a function
of the state in that cell and its immediate neighbors (shown at the
top of the column).
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4. Analysis

Some patterns are clearly visible in Table 2, Figure 3, Figure 4 and Figure
5. For all CA’s for which nontrivial conservation functions exist, there is a great
deal of homogeneity in the middle range of neighbor counts. For example, any
given CA in the table has the same transition rules for neighbor counts 3-6, and
most have identical transition rules for neighbor counts 2-7. We conjecture this is
combinatorically driven. That is, for the middle range of neighbor counts, there are
so many different ways to distribute a fixed number of neighbors among eight cells
that a low-order conservation function cannot incorporate them all. By contrast,
there is only one way to arrange zero or eight neighbors around a cell, eight ways
to arrange one or seven, and so forth. Near the minimum and maximum of the
neighbor count range, the number of possible configurations is sufficiently small
that a low-order conservation function is more likely to emerge.

We also note that all CA’s with rule vectors of the form xFFFFFFFx, xSSSSSSSB,
and xDSSSSSSB have nontrivial conservation functions. All CA’s of the form
xSSSSSSSx have a nontrivial as well, unless exactly one of the x’s is ’S’.

Finally, our results show that all known nontrivials correspond to energy windows
for which the width and the height differ by no more than one. Whether this holds
true for all nontrivials remains an open question.

5. The Game of Life

Because of the special significance of Conway’s Game of Life (CA #174666, rule
B3/S23, rule vector DDSBDDDDD), we have examined it for nontrivial energy
conservation functions up to order 13. None have been found.

6. Conclusions and Future Work

Table 2 and Figures 3 through 5 represent a complete taxonomy of all known
nontrivial conservation functions for 1- and 2-dimensional binary cellular automata
up to isomorphism. We have discussed some of the patterns we have observed.

[1] introduced the notion of core nontrivials, recognizing that cellular automata
could exhibit different nontrivials of higher orders that are not simple extensions
of lower ones. We have yet to apply this idea to the automata shown here. Thus
the functions we report are only the first core nontrivials found. The existence of
multiple cores for 2D binary cellular automata remains an open question. Detecting
such cores requires only well-understood modifications to our existing code, and is
on our list of future enhancements.

Number-conserving 1D cellular automata [2] are automata with transition rules
that conserve the sum of the number of states in a neighborhood. A number-
conserving function is one kind of energy conservation function defined in Definition
1.8, where the function is simply the sum of all terms in the window. Our work
therefore includes number-conservation as a special case. The theory described here
applies to all cellular automata with finite states and arbitrary dimensionality. The
results for 2D automata are all new.

Continuing improvements in computing power and further refinements of our
codes should enable us to identify nontrivials at increasingly higher orders. The
existence of nontrivialss for m × n energy windows with |m − n| > 1 remains an
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open question. Higher dimensional CAs, non-totalistic CAs, and k-colored CAs
could also be explored.

As yet, an elegant, unifying description of cellular automata relating their deci-
sion rules and a given energy window to a nontrivial conservation function remains
elusive. While the general problem is undecidable, we have mapped out the space
for lower orders and binary outer totalistic CAs well enough to suggest some ideas
for a more elegant classification scheme than the present ad hoc one we are cur-
rently forced to adopt. Such a scheme may in fact exist, or it may remain forever
elusive, an fundamentally complex property inherent in the nature of computational
automata. We hope further work may yet resolve this question.

7. Errata and Acknowledgments

Readers unfamiliar with automata conservation functions may wish to review
[1]. In the course of preparing this paper, we noticed errors in the first three tables
of our previous results. For the sake of completeness, we present the necessary
corrections to [1] here:

TABLE 1: Replace 98 with 94, replace 40 with 46
TABLE 2: Replace 136 with 200
TABLE 3: Replace 136 with 200, replace 248 with 232

The authors are grateful for the support of the Air Force Academy Center for
Cyberspace Research, and to the reviewers for their helpful comments.
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Appendix A. Proofs of theorems

Proof of Theorem 2.1: Let Gw be the set of all integers in {0, . . . , 2n − 1} that
have a Hamming weight of w (i.e. have exactly w bits equal to 1 when written in
binary). Then the sum from Definition 1.15 can be broken into sets of terms with
equal Hamming weight:

N(s1, . . . , sn) =
2n−1∑
b=1

k
∏

i si−bi(−1)1+
∑

i bi (A.1)

=

n∑
w=1

∑
b∈Gw

k
∏

i si−bi(−1)1+
∑

i bi (A.2)

=

n∑
w=1

(−1)w+1
∑
b∈Gw

k
∏

i si−bi (A.3)

For a given b, the exponent on the k represents the number of unconstrained el-
ements remaining in the tensor after certain sides have been constrained to be
entirely zero. The 1 bits in b select which sides are constrained to be all zero. So
if the 1st, 3rd, and 7th bits of b equal 1, then the size of the tensor is decremented
in the 1st, 3rd, and 7th dimensions, which reflects that the origin-containing sides
in the 1st, 3rd, and 7th dimensions have all elements constrained to equal zero.

The expression of k raised to the number of unconstrained elements gives a count
of how many tensors over C exist, subject to the constraint that certain sides must
have all elements equal to 0 (where the sides are chosen by the 1 bits in b).

So the entire double sum is a sum of counts of tensors that have been filled
with bits in various ways. Some tensors are included more than once in that sum.
The power of -1 means that some tensors are added to the total, while some are
subtracted from the total. Since Z(s1, . . . , sd) is the set of all tensors with at least
one side set to zero, it must be shown that tensors with no all-zero sides are not
included in the count. And it must be shown that each tensor with at least one
all-zero side is counted exactly once (i.e. will be positively counted exactly one
more time than it is negatively counted). These two cases will now be shown.

The first case is obvious. If a tensor has no all-zero sides, then it would only be
counted by a term of b = 0, which has a Hamming weight of w = 0. But the sum
is for w > 0, so such tensors are never counted.

For the second case, consider a tensor M with exactly z of its origin-containing
sides having all zero elements. The double sum will count that tensor several times
for each value of w. When w = z, it is counted exactly once, with a b that has w of
its bits set to 1, corresponding to the origin-containing, all-zero sides of M . When
w = z−1, it is counted w times, where b has only z−1 bits set to 1, corresponding
to z − 1 of the z all-zero sides, and with the remaining bits filled in to match M .
When w = z − 2, it is counted

(
z
2

)
times, and in general, for each w ≤ z it is

counted
(

z
z−w

)
=

(
z
w

)
times, once for each way of setting w of the bits of b to 1,

corresponding to w of the z all-zero, origin-containing sides of M . Each of these
counts has a coefficient that is a power of -1, so the total contribution of M to the
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count is

z∑
w=1

(−1)w+1
(z
w
)

(A.4)

=− (−1)0+1
(z
0
)
+

z∑
w=0

(−1)w+1
(z
w
)

(A.5)

=1 +

z∑
w=0

(−1)w+1
(z
w
)

(A.6)

=1 + 0 (A.7)

=1 (A.8)

So, we see that every M that has at least one all-zero, origin-containing side will
contribute a value of exactly 1 to the original sum, and every M that lacks such a
side will contribute nothing. Therefore the sum will give exactly the count of how
many tensors have the desired property, and therefore N(s1, . . . , sn) does give the
size of the set Z(s1, . . . , sn). �

Proof of Theorem 2.2: There are ks1s2...sn tensors over C of the given size, of
which N(s1, . . . , sn) are zero-sided tensors (by Theorem 2.1), so there must be
ks1s2...sn −N(s1, . . . , sn) non-zero-sided tensors. �

Proof of Theorem 2.3: A trivial is defined to be a function such that given any
universe, of any size, with any initial state, it will assign the same total energy to
the original state as to the state after iterating the cellular automaton for one step.
Thus, for any given size s, the trivials can be defined as those functions that satisfy

E(s,M) = E(s, PC(M)) (A.9)

or

E(s,M)− E(s, PC(M)) = 0 (A.10)

where E(s,M) is the total energy of universe state M , found by summing the
energy function over all possible windows of size s. However, note that the two
universe states differ only in the state of a single cell: the one set to zero by the
PC function. Thus any energy window that doesn’t include that cell will be the
same on both sides of the equation, and so can be subtracted from both sides.
Therefore, rather than considering all universes of all sizes, it is only necessary to
consider small tensors M that are just large enough to contain all the windows
that overlap the bit that is flipped, without any toroidal wrapping at the edges.
If the equation is satisfied for all such matrices, then it will also be satisfied for
all possible universe states of any size. Given that the cellular automaton has a
neighborhood of size s = (s1, . . . , sn), we need only consider the matrices over C of
size (2s1 − 1)× (2s2 − 1)× · · · × (2wn − 1).

There are only finitely many possible patterns of cells that fit within the energy
function. So the value that the function assigns to each input pattern can be
considered a variable, and the set of equations can be viewed as a set of linear
equations in those variables. The e function defined above extracts the coefficients
of the variables, and combines them to form a vector. The set of such vectors is

{e(s,M)− e(s, PC(M)) | M ∈ B(s1, . . . , sn)} (A.11)
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There are two optimizations that without loss of generality reduce the number
of simultaneous equations. It will be shown that they reduce the set of M matrices
from including all of B to only including a subset based on Z̄,which gives the set
size that is to be proved.

The first optimization is to consider only those M matrices where the elements
in the second half are constrained to be zero. Since the size of M is an odd number
2si−1 in each dimension, there will be a single element in the exact center. Without
loss of generality, we can set to 0 every element that comes after this element in row
major order, and use only the resulting equations to define the trivial functions.
For example, if the energy window is 2D, where (w1, w2) = (3, 3), it is sufficient to
consider only those M matrices of this form:

*****
*****
**100
00000
00000

(A.12)

where the elements marked * are filled with arbitrary colors from C, and the
element marked 1 is any color other than 0. This subset of the M matrices is
sufficient, as is proved by the following.

Suppose that a function f has been found that satisfies the subset of the trivial-
defining equations where the M matrix has its second half set to zero. We can see
that such a function must actually be trivial. Consider a large universe state U that
contains arbitrary elements everywhere, except it has 0 elements in a stripe across
the middle that is w1 rows high, and in a bump sitting on that stripe that is w2

elements wide, as in this example (where the elements marked * contain arbitrary
colors):

***************
***************
***************
*********000***
000000000000000
000000000000000
000000000000000
***************
***************
***************
***************

Note the * just to the left of the bump. If the 5× 5 matrix of A.12 is slid over
this large universe state such that the 1 in the matrix aligns with the * to the left
of the bump, then all the zeros in the matrix will align with zeros in the universe.
Therefore, if that * is changed to a zero, the total energy of f applied to all windows
that include that bit must remain unchanged.

Therefore, the universe above is equal to the following universe, where the bump
has grown from a width of 3 elements to 4:
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***************
***************
***************
********0000***
000000000000000
000000000000000
000000000000000
***************
***************
***************
***************

By induction, this process can continue until the entire row is zero, and the
resulting state is guaranteed to have the same energy as the original

***************
***************
***************
000000000000000
000000000000000
000000000000000
000000000000000
***************
***************
***************
***************

Therefore any state that has at least one bump of zeros will have the same energy
as a state with that entire row set to zero. Now consider a state with two such
bumps, separated by a distance of at least w2 on both sides:

***************
***************
***************
*000*****000***
000000000000000
000000000000000
000000000000000
***************
***************
***************
***************

A state with two bumps has at least one bump, and so has the same energy as
the state with the entire row set to zero. Note that either one of the bumps can be
replaced with arbitrary elements without affecting the total energy, because there
will still be one bump remaining. But the two bumps are far enough apart that no
single energy window can touch both simultaneously. If replacing one of the bumps
with arbitrary bits has no effect on the total energy, and the same is true of the
other bump, and the two are far enough apart to not interact, then both of the
bumps can be replaced with arbitrary bits without affecting the total energy. So a
state with w1 rows of zeros must have the same energy as a state with w1+1 rows.
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energy



* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *


= energy



* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *


(A.13)

Now, the same reasoning can be applied in the first dimension. It was just shown
that any state with a stripe of zeros of height w1 will have the same total energy
as one with a stripe of w1 + 1, regardless of the contents of the * elements. By
induction, they will both have the same energy as a universe state that is entirely
filled with zeros. Therefore, all universe states with at least one w1-rows-tall stripe
of zeros have the same energy. So does any state with two such stripes, separated
by more than w1 rows on either side. And it continues to have that same total
energy if either one of the stripes is replaced with arbitrary elements. The two are
far enough apart to not interact nonlinearly, so it will have the same energy if both
are replaced with arbitrary elements. Thus any universe filled with any arbitrary
state will have the same total energy, and so the energy function is trivial.

This same argument works in any number of dimensions, working one dimension
at a time. For a 3D cube of numbers, there would be a slab of several layers of
zeros. Immediately above that slab would be a single layer that looks like the 2D
example just considered (a stripe with a bump). The above argument would show
that a slab with an arbitrary layer above it has the same energy as a slab with an
all-zero layer above it. So by induction, it has the same energy as a cube with all
layers entirely filled with zeros. So would a cube with two slabs of zeros, widely
separated. And so any cube with arbitrary elements has the same total energy
as the all-zero cube. So all possible states have the same energy. This argument
extends in the same way to n dimensions.

The theorem has now been proved for every M that has zeros for the second
half of its elements. But without loss of generality, the subset of B can be shrunk
further to include only Z̄. To do this, we first show that for any M that con-
tains two nonzero elements that are far enough apart that they cannot fit within
a single energy window, the corresponding equation can be removed from the set
without loss of generality. This is because the equation in question is not linearly
independent of the other equations.

Consider the case where M is such a matrix. Of the two nonzero elements that
are far apart, call the first one reached in row major order the ”first element”, and
call the other the ”second element”. Let M0,1 be M with the first element set to 0,
let M1,0 be M with the second element set to zero, let M0,0 be M with both set to
zero, and let M1,1 be M with neither element changed (i.e. M1,1 is another name
for M). The set of linear equations that defines the trivial conserved functions will
therefore include these 4 equations:

E(s,M0,1)− E(s, PC(M0,1)) = 0 (A.14)
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E(s,M1,0)− E(s, PC(M1,0)) = 0 (A.15)

E(s,M0,0)− E(s, PC(M0,0)) = 0 (A.16)

E(s,M1,1)− E(s, PC(M1,1)) = 0 (A.17)

A function satisfying these equations should also satisfy any linear combination
of them, so it must satisfy the sum of the first two minus the other two, which gives
this equation:

E(s,M0,1)− E(s, PC(M0,1)) + E(s,M1,0)− E(s, PC(M1,0))

− E(s,M0,0) + E(s, PC(M0,0))− E(s,M1,1) + E(s, PC(M1,1)) = 0 (A.18)

There is a large distance between the two nonzero elements being considered, so
no single energy window contains both of them. Those terms in the sum E(s,M0,0)
that include the first element will therefore cancel out with those terms in the
negative sum−E(s,M0,1) that contain the first element. This is because those
two sums differ only in the terms that include the second element, none of which
include the first element. Similarly, the terms in E(s,M0,0) that contain the second
element cancel with those in −E(s,M0,1) that contain the second element. Note
that there are 8 summations in the above equation, and they can all be paired up
similarly so that all terms including the first element cancel, as do all containing
the second element. In addition, if there is a window that contains neither the first
nor second element, then the term for that window will occur in all 8 summations,
being positive in 4 and negative in 4, and so will cancel out. Therefore, all terms
in all the summations cancel, and the equation reduces to:

0 = 0 (A.19)

Given a set of linear equations, if some subset of the equations sums to the 0 = 0
equation, that means that they are linearly dependent, and so one of them can
be removed from the set without loss of generality. We will choose to remove the
equation involving M1,1. This can be repeated for each M matrix that contains
any two nonzero elements that are too far apart to fit in a single energy window. If
the M tensors with highest number of nonzero elements are deleted first, then this
procedure will always apply, because when it is time to delete the tensor M1,1, the
3 tensors M0,1, M1,0, and M0,0 will all have fewer nonzero elements, and so cannot
have been deleted yet. Therefore, without loss of generality, we can remove all of
the equations based on M tensors with nonzero elements that are too far apart to
cover with a single energy window.

At this point, the set of tensors being considered consists of those M tensors
that have all 0 elements in their second half, and have all of their nonzero elements
clustered together in a region that fits within a single energy window. For example,
in 2D, if the energy window is 3 × 5 then the entire M matrix will be 5 × 9. One
example of an M that would generate one of the equations that remains in the final
set is:

M =

0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(A.20)
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This is a legalM because there is a nonzero element in the center, all the elements
are 0 in the second half, and all of the nonzero elements fit within a single energy
window. That last fact is shown by shading a 3 × 5 region that is the size of the
energy window, and includes all the nonzero elements. There are actually several
positions that the shaded window could have been drawn. For uniqueness, we will
always choose to draw that window so that there is a nonzero element in the top
row and in the leftmost column of the window. In other words, the window will
be chosen so that its contents are not a zero-sided tensor. If the contents of that
window are called A, then by construction we must have A ∈ Z̄(s1, . . . , sn), and
any A in that set will generate a legal M corresponding to an equation that is kept.

Given only A, it is possible to determine what the entire M matrix must be.
Since M must have a nonzero in the center and all zeros in the second half, it
must be the case that the shaded window was positioned within M such that the
last nonzero element of A was the center element of M . So for any non-zero-sided
tensor A, it is clear that it must be the case that M = PZ(A).

All of the theorem has now been proved except the word ”minimal”. It is clear
that the equations derived from the non-zero-sided tensors are sufficient to define
the trivials. So it remains only to show that these equations are linearly indepen-
dent. Or, equivalently, that the vectors of coefficients given by the theorem are
linearly independent.

To show that a set of vectors are linearly independent, it is sufficient to give a
name to each position in the vector, and give a name to each vector, where there is a
total order on names, and the vector named A has a nonzero element in the position
named A, and all zero elements in the positions with names before A. This will
now be done with the equations defining the trivials. Each equation is generated
by a tensor M . It has been shown that each M is generated by a non-zero-sided
tensor A by the equation M = PZ(A). Therefore it is natural to use A as the name
of each equation. The terms in the equation refer to energy functions defined over
energy windows the same size and shape as A. Therefore it is natural to use A as
the name of the position in the vector corresponding to the energy function applied
to a window whose contents are A. It remains only to find some ordering over all
matrices A that has the desired property.

Consider an ordering the A tensors such that A ∈ Z̄(s1, . . . , sn). In this ordering,
the tensors are sorted by the number of nonzero elements. Those tensors with more
nonzero elements come before those with fewer. In the case of a tie, the tensors
are ordered lexicographically, with all the elements unrolled into a single list in row
major order. So in 2D, if two matrices have the same number of nonzero elements,
then their order is determined by their upper-left element. If that element is a tie,
then their order is determined by the element to the right of it. If that is a tie,
comparison continues across the top row, then left-to-right across the second row,
and so on down to the bottom row. It will now be shown that this ordering has
the desired property.

Consider the M shown in equation A.20, and the A which is shown shaded.
This M will generate an equation with a term for every possible position of the
shaded window, and with the center element being both the given color and 0. In
the ordering just described, the shaded window will come before any other possible
position, and before any version with the central element set to 0. It can be shown
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that this will be true for any non-zero-sided tensor A, not just for the one in the
example.

It is clear that of all the terms in the equation, the first (according to this
ordering) cannot have the central element of M set to 0, because there will be
another term with the same window position and the central element nonzero,
which will give a larger number of nonzero elements in the window, and so will
come before it in the element.

Similarly, the shaded window position must come before any position where the
window has been shifted right some positive distance, or shifted down some positive
distance, or both. That is because the shaded window is guaranteed to have only 0
elements to its right and below it in the larger M matrix, and A is guaranteed to
have at least one nonzero element on its top row and leftmost column. Therefore,
any combination of shifts to the right or down is guaranteed to strictly decrease the
number of nonzero elements in the window. Therefore those shifted windows will
come after the shaded position in the ordering.

In addition, any shift up or to the left or some combination of the two will also
give a window that is later in the ordering. This is because the shaded region is
guaranteed to have only zeros above it and to the left. Shifting the window up or left
will either decrease the number of nonzero elements in it, or leave them unchanged.
If it decreases that number, then the window moves later in the ordering. If it
leaves it the same, then the shift will bring in new zero elements that move the first
nonzero element within the window (in row major order) to a later position, thus
moving the window to a later position in the ordering.

Therefore, for any equation generated by an M = PZ(A), there will be a term
corresponding to the energy of A, and all other terms will refer to tensors that
come later in the ordering. Thus this ordering has the desired properties, and so
the equations are linearly independent.

So it has been shown that the proposed set of equations are sufficient to define
the trivials, and are a minimal set, because they are linearly independent. Thus
they form a basis set, and Theorem 2.3 is proved. �

Proof of Theorem 2.4: First note that if the A ∈ Z̄ in the theorem is replaced
with M ∈ B, and the PZ(A) is replaced with M , then this theorem becomes the
standard definition of the equations defining the conserved functions, which has
been given in practically every paper that has been published on additive conserved
functions for CAs. It states that the ”conserved functions” can be defined by
imagining an arbitrarily-large universe with an arbitrary state, and one cell defined
to be the ”origin” which has a nonzero color. If the CA is run for one step, the total
energy of the universe must remain unchanged. If the origin is instead set to zero
and the universe is run for one step, then again the energy must remain unchanged.
These four energies (the universe before and after that step, with the origin set to
0 or not), must therefore satisfy the equation E(M)−E(successor(M))−E(M)+
E(successor(M)) = 0, for all universe states M . Because of canceling terms, it is
sufficient to draw M from the set of tensors twice the size of the energy window,
rather than trying all infinite universes. That yields a statement identical to the
theorem, except for the substitutions noted.

The theorem as stated says it is not necessary to check all possible M ∈ B. It is
sufficient to consider only M such that M = PZ(A), where A ∈ Z̄. This yields a set
of M that are only a strict subset of B. In other words, it is sufficient to consider
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only those M where the second half of M is zero, the center of M is nonzero, and
all the nonzero elements of M lie in a region that is small enough to be covered
with a single energy window. This result for conserved functions is analgous to the
result for trivial functions in Theorem 2.3. In fact, the proof goes through here
in an identical way. Where proof by induction works for the trivial theorem, it
also works for this conserved theorem. Where terms in sums cancel for the trivial
theorem, they also cancel for the conserved theorem. Where equations are shown
to be linearly dependent and are deleted in the trivial theorem, the same can be
done for the conserved theorem. The only difference is that the trivial theorem
went further and proved the set of equations was ”minimal” (i.e. formed a basis
set). No such claim appears in this conserved theorem, because it may or may not
be true, depending on R. Thus, the first two thirds of the trivial theorem apply
here, practically unchanged, and so this theorem is proved as well. �

Proof of Theorem 2.5: To prove T is a basis for the trivials, it is sufficient to
show three things: that every element of T is a trivial, that its elements are linearly
independent, and that the number of elements of T equals the dimensionality of
the space of trivials. Each of these will now be shown.

It is clear that each element of T is a trivial. One of them is the constant
function f(x) = 1, which is trivial because it assigns to each universe an energy
equal to the number of cells, independent of the state of those cells. The rest of
the functions are of the form f(x) = H(x,A) − H(x,B) where tensors A and B
are two different patterns formed by taking a smaller tensor C and padding it on
one or more sides with * symbols. If a universe state contains n different (possible
overlapping) copies of the pattern C, then as f is scanned over the entire universe,
it will match A exactly n times and match B exactly n times, yielding a total energy
for the universe of n − n = 0. Thus all universe states are given a total energy of
zero regardless of the state, so the function is trivial.

To check for linear independence, the H function should first be expanded by
summing over all possible ways to replace each * symbol with a color from C. For
example, in 2D with the colors {0, 1}, the trivial:

f(x) = H(x, *0001*0011)−H(x, 0001*0011*) (A.21)

can be expanded as:

f(x) =H(x, 0000100011) +H(x, 0000110011) +H(x, 1000100011 +H(x, 1000110011)

−H(x, 0001000110)−H(x, 0001000111)−H(x, 0001100110)−H(x, 0001100111))
(A.22)

These are equivalent by the definition of the H function. If C contains c colors,
and x is a tensor with n elements, then there are cn possible patterns that can
appear within the H function, and so each trivial can be represented by a vector
of cn coefficients. As in the earlier proof, we can prove these trivials are linearly
independent by assigning each possible vector a name, and assigning each position
within the vector a name, and choosing an ordering over names, such that vector
A has a nonzero in position A and has zeros in all earlier elements.

It is natural to name each position in the vector by the tensor that is inside H
for that position. Since T is defined to have a trivial for each M ∈ Z̄(s1, . . . , sn),
it is natural to use that M as the name for each vector. Let the ordering be an



29

ordinary lexicographical ordering, where the elements of a tensor are taken in row
major order, and where 0 comes before all nonzero colors.

If these choices of naming and ordering are applied to the example in equations
A.21 and A.22, it is clear that name of the trivial will equal the tensor in the first
term shown in equation A.22, and the first coefficient (according to the chosen
ordering) is the same tensor. Therefore, it has the desired properties. This will
be true in general. The two tensors in A.21 from from applying PL and PR to a
zero-sided tensor M . Therefore, M can be recovered by replacing the * elements
in PL with zeros. That same tensor will always appear as the first term (in the
chosen ordering) in the expanded function. Clearly, the top row of A.22 will always
have its lexicographically-first element being the one where all the * elements were
replaced with zeros. That is because the replacement of a * with a 0 will always
come before the replacement of a * with a nonzero. A similar argument shows that
the lexicographically-first tensor on the second row will also be first. And when
those two are compared, the one on the first row will always precede the one on the
second row, because the former is simply the latter shifted one space to the right
by inserting zeros on the left.

This the vectors have the property that the first nonzero element in each vector is
in the position whose name matches the name of the vector. Therefore the vectors
are linearly independent.

It remains only to show that the space spanned by the trivials in T has the same
dimensionality as the space of trivials. The dimensionality of the space of energy
functions equals the number of tensors the size of the energy window, because each
energy function is defined by a vector of coefficients, with one coefficient per possible
tensor. It was proved that a basis set for the linear equations defining the trivials
has the same number of equations as there are non-zero-sided tensors. Therefore,
the solution space for those equations (i.e. the space of all trivials) must have a
dimensionality that is equal to the number of possible tensors minus the number of
non-zero-sided tensors. This difference is simply the number of zero-sided tensors
(because the zero-sided and non-zero-sided tensors partition the set of all tensors).

Thus, T contains a number of trivials equal to the dimensionality of the entire
space of trivials. Since they are linearly independent, and are all trivials, this proves
that T is a basis set for the space of all trivials. �

Proof of Theorem 2.6: Recall that for the proposed set to be a complement to
the trivials, it must consist of vectors that are linearly independent of each other,
and linearly independent of the trivials, and that together with the trivials span
the entire space.

It is obvious that the proposed set is linearly independent, since each vector
consists of all zeros and a single 1, and the 1 is in a different location for each
vector.

It is also obvious that each of these vectors are independent of the trivials. That
is because each vector in the proposed set corresponds to an energy function of the
form f(x) = H(x,M) for some M in (Z). Such a function will assign an energy of
0 to a universe state that contains no copies of M , and will assign a positive energy
to a universe state that contains one or more copies of M . Therefore, the function
is not trivial, so its vector is not within the space spanned by the trivials.

Finally, it must be shown that the dimensionality of this space plus the dimen-
sionality of the space of trivials equals the dimensionality of the space of all energy
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functions. The dimensionality of these three spaces clearly equals the sizes of the
sets Z, Z̄, and B, respectively. Since the size of the last is the sum of the sizes of
the first two, the desired relationship holds. Therefore, the theorem is proved. �
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