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Abstract—An important problem is to provide jam resistance
for wireless networks. This is more difficult in cases such as GPS,
where the sender and receiver do not have a shared secret that
is unknown to the jammer. Currently, the only known system for
such jam resistance without shared secrets is the BBC algorithm,
which is fastest when it uses the Glowworm hash. We present
a new type of analysis of Glowworm, using exhaustive search
to find the absolutely best possible attack for reduced forms
of Glowworm, as well as for the full Glowworm applied to
shorter packets. Because we are defending against a stronger
threat model (an adversary with infinite computational power),
the analysis is actually easier than for a traditional threat model,
and we derive much stronger results than would be possible for
cryptographic hashes that are designed for a more traditional use.
In addition, surprising results were found for its behavior near
the boundary conditions. The result is that BBC with Glowworm
can be used with great confidence, and it is now clear how to
choose the best combination of parameters for practical use. 1

I. INTRODUCTION

It is an important problem to provide jam resistance for
wireless networks, especially in the case where they are large
enough that it is inconvenient or impossible to have a shared
secret known to the sender and receiver, but unknown to
the attacker. An extreme example would be GPS satellites,
where a secret cannot be shared with the receiver and kept
secret from the adversary, because the “receiver” is every
person on earth, including the adversaries. There is currently
only one algorithm for achieving jam resistance with no
shared secret in the presence of an adversary assumed to have
infinite computational power: the BBC (Baird, Bahn, Collins)
concurrent code [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18].

The BBC jam resistance system is built on an OR channel,
which is a way of communicating bits, where it is easy for an
attacker to change a 0 to a 1, but hard to change a 1 to a 0. In
[13], it is shown how this can be built using a Golay efficient
Golay correlator, as shown in figure 1.

For fixed delays Di and weights wi, this construction allows
the generation of a chip sequence, a sequence of +1 and -1
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Fig. 1. An efficient Golay correlator. Given a stream of bits as inputs, it
outputs the result of summing several Golay chip sequences, one for each
1 bit in the input, each starting at the time the 1 was received. Similarly,
by negating the weights, it acts as a matched filter, taking in that waveform,
and outputting a low signal with a spike for each 1. We refer to the binary
sequence of inputs or output spikes as a ”packet”.

values, that is very long: exponential in the number of stages. It
is generated by sending into the input at the left end a sequence
of 0 values, with a single 1 bit among them. The output starts
when the 1 bit is received, and generates the sequence. If
several of the input bits are 1, then it generates the sum of
several copies of the sequence, each starting when the 1 is
received, as if there were several generators whose outputs
were being added. By negating the weights, this generates
a matched filter. If the generated sequence is fed into the
matched filter, its output is the original sequence of 0 and
1 bits. If there is noise in the transmission, then the output
will be low, with spikes at each 1. An attacker can easily
add new 1 bits (or spikes) to the receiver’s output by simply
broadcasting the same chip sequence. But it is difficult for an
attacker to remove a spike. To do so would involve somehow
canceling a complicated, spread-spectrum signal, which is
difficult. Therefore, the construction in the figure can be used
to create an OR channel.

II. BBC

The BBC algorithm then sends a message by first encoding
it as a packet, which is a long sequence of mostly 0 bits, with
a few 1 bits in it. It is designed to be easy for the receiver
to recover the message from the received packet, even if an
attacker has added a number of 1 bits. Generally, it only fails
if the attacker can fill more than a third of this packet with
1 bits. Normally, the packet would be very sparse, and the
sender would only expend energy proportional to the number
of 1 bits in the packet. So if the sender is filling, for example,
only one position out of 3000 with a 1 bit, then the attacker
would need to fill 1 of every 3, which would require 1000
times the broadcast energy. That is why the system is resistant
to jamming.
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Fig. 2. Use of a hash in BBC decoding. The receiver detects the packet
at the top, and decodes it by a depth-first search of the tree at the bottom,
using the hash values shown in the middle. A string in the tree is defined to
be a non-leaf (gray) if its hash returns the index of a position in the packet
containing a mark (a gray 1).

However, there is an attack to consider: we might imagine
that a clever attacker could construct a packet that is still
sparse, but that somehow forces the receiver into doing too
many computations to decode it. This is called an attack
packet. We might wonder whether an attacker with infinite
computational power could find such attack packets, and use
them to jam the receiver by overwhelming the receiver’s
limited computational ability. For some hash functions, such
attack packets exist: there are sparse packets that require many
operations to decode. For an ideal hash function, such attack
packets would not exist: every sparse packet would require
only a small number of operations to decode. The purpose
of this paper is to explore whether such attack packets exist
for BBC using Glowworm. It will be seen that they do not,
at least for the small cases that can be exhaustively explored.
Thus, for these cases, an attacker with infinite computational
ability will not be able to find an attack packet (because they
don’t exist), and so will not be able to jam without resorting
to using large amounts of RF energy.

To understand how an attack packet might work, it is useful
to see how BBC decodes a packet to get a message (or multiple
messages, if several had been sent simultaneously). The BBC
signal is transmitted with no shared secret. The receiver then
decodes it using the process in Fig. 2. At the top of the figure is
the packet that the receiver receives. The receiver is assumed
to be using a hash function H , which is also used by the
sender, and is also known to the attacker. The receiver then
imagines an infinite binary tree, a portion of which is shown
in the figure. Each vertex in the tree contains a binary string.
Its children contain the same string, except a 0 is appended
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Fig. 3. The Glowworm hash (also called Glowworm-32). The hash Hi of
an i-bit string is calculated by XORing the least significant 32 bits of Hi−1

with the last bit of the string, bi, then performing a nonlinear transformation
on it, then XORing the result with the earlier hash Hi−32. Only the lowest
32 bits of Hi are intended to be used as the hash, though the new results
found here suggest it is better to use only the lowest 30 bits. Glowworm-N is
the same, except each 32 is replaced with N , the word size is 2N , and the
final shifts are by {N,N/2, N/4, ...}, while greater than 3.

to it by the left child, and a 1 by the right child. The receiver
walks down this tree, doing a depth-first search, cutting off
the search whenever a white vertex is reached. The vertices
are colored gray or white according the hash of their string.
The output of the hash is viewed as the address of a bit in the
packet. The vertex is gray if the bit is 1, and white if it is 0.

Usually, if the packet is less than one third filled with 1
bits, then the gray vertices in the tree will be less than twice
as numerous as the 1 bits in the packet. So the time to decode
the tree is linear in the number of 1 bits, which are at most
linear in the size of the packet. But for certain, weak hash
functions, it turns out that many vertices in the tree map to the
same location. If that location has a 1, then all those vertices
become gray. If the gray vertices form a large, connected set,
including the root, then the receiver will forced to explore an
enormous set of vertices, and the jammer will have succeeded.

III. GLOWWORM AND GLOWWORM-N

Of course, the security of this process depends on the nature
of the hash. A typical cryptographic hash should be secure,
but is very slow. The Glowworm hash was proposed to be fast,
and secure when used in BBC. It was not designed to meet
the security requirements of a cryptographic hash, such as
collision resistance, (which means it is hard to find two strings
that hash to the same value). Glowworm was designed to meet
the security requirements for use within BBC. To be secure, it
would need to prevent good attack packets from existing. The
empirical results below suggest that Glowworm does achieve
this goal. The system is secure against an opponent with
infinite computational power, but limited RF broadcast energy.
At least for the small cases tested exhaustively here.

Figure 3 shows the standard Glowworm algorithm, also
known as Glowworm-32, which was published in MILCOM-
2012. The results below will show that it appears to be secure,
at least for small packets. But this is not sufficient. It is



// Glowworm-N - A hash for use with BBC codes
// 2015, Version 1.0 - this is public domain
// Leemon Baird, Leemon@Leemon.com
//
// Call glowwormInit once. Then repeatedly call AddBit to
// add a new bit to the end of the string so far, and return
// the hash of the resulting string. DelBit deletes the last
// bit, and returns the hash of the resulting string.
// DelBit and must be passed the last bit of the most recent
// string hashed. The macros should be passed these:
// uint64 s[N]; //buffer
// static uint64 n; //current string length
// uint64 t, i, h; //temporary
// const uint64 CHECKVALUE = 0xCCA4220FC78D45E0;
// The integer type must be unsigned with at least 2*N bits.
// For a weakened, reduced form of Glowworm, define N<32,
// and use only the N-2 lowest bits from the output. For
// N=32, this is normal Glowworm, and 30 bits may be used.
// The third line of AddBit is shown with terms
// from 0 to 3, but for N>32 should have terms ranging
// from 0 to at least log2(N)-3. Init returns the hash of
// the empty string, which for N==32 should be CHECKVALUE.

#define N 32

#define f(t,S) (((N>>S)<4) ? 0 : t>>(N>>S))

#define glowwormAddBit(b,s,n,t) ( \
t = s[n % N] ˆ ((b) ? ((1L<<H)-1) : 0), \
t = (t|(t>>1)) ˆ (t<<1), \
t ˆ= f(t,0) ˆ f(t,1) ˆ f(t,2) ˆ f(t,3), \
n++, \
s[n % N] ˆ= t \
)

#define glowwormDelBit(b,s,n,t) ( \
n--, \
glowwormAddBit(b,s,n,t), \
n--, \
s[n % N] \

)

#define glowwormInit(s,n,t,i,h) { \
h = 1; \
n = 0; \
for (i=0; i<H; i++) \

s[i]=0; \
for (i=0; i<128*H; i++) \

h=glowwormAddBit(h & 1L,s,n,t); \
s[n = 0] \

}

Fig. 4. C implementation of the Glowworm-N hash.

common to test cryptographic systems by attempting to break
smaller, or weakened versions of them. Therefore, we now
propose Glowworm-N, which is the same as Glowworm when
N is 32, but which has a much smaller internal state when N
is smaller. An implementation in C is given in figure 4.

IV. TESTING FULL GLOWWORM, SMALL PACKETS

Figure 5 shows the results of exhaustive search for attack
packets for the full Glowworm-32, with various small packet
sizes. For a given packet size, we exhaustively searched
through all possible packets of that size that were one third
filled with 1 bits. There are exponentially many, of course,
but we were able to search up to packets of size 42. Only
packet sizes that are a multiple of 3 were considered, because
otherwise they wouldn’t be exactly one third filled with 1 bits.
Figure 6 shows the same data, but with each cost divided by
the packet size, to give a ratio of cost per packet bit.
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Fig. 5. Average decode cost (number of hashes calculated while decoding)
for a worst-case packet, as a function of the packet size, for full Glowworm
(Glowworm-32). The graph shows how successful an attacker with infinite
computational power would be. It becomes very linear above size 12,
suggesting that packets of millions of bits would still easy to decode, even
when attacked by such an adversary.
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Fig. 6. Average decode cost (number of hashes calculated while decoding)
divided by the packet size, for a worst-case packet, as a function of the packet
size, for full Glowworm (Glowworm-32). This levels off at 9.29, meaning that
on average, the most powerful attack packet possible requires only 9.29 hash
calculations per packet bit.

However, it wasn’t enough to simply do this with standard
Glowworm, which is a single hash. For example, on a packet
of size 6, there are few possible packets, and one of them
will have the highest decode cost, so that could be considered
the worst-case cost for size 6. But it will be highly dependent
on the particular way the hash was seeded, and will not be
very informative about the hash algorithm itself. Therefore,
we used a standard approach from cryptography: we expanded
the single hash function into a family of hash functions by
using random prefixes. In other words, for a string S, we could
define the result of applying hash function Glowworm-32-R
to string S to be the result of applying Glowworm-32 to to the
string (R,S) which is concatenation of R and S. In this way,
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Fig. 7. Average decode cost (number of hashes calculated while decoding)
for a worst-case packet, as a function of the packet size, for Glowworm-N,
for various sizes of packet and various sizes of N. Packet sizes are always
2N−2 or less. The lines are horizontal and flat, indicating that all N values
are equally secure. The lines are evenly spaced, because figure 5 is linear, so
the system is secure for these cases.

we generated 500 different hash functions in the Glowworm-
32-R family for each packet size, and exhaustively searched
to find the most powerful attack packet for each of the 500
hashes. Figure 5 shows the average of those 500 trials. The
variance was also found to be small, and to actually decrease
as a fraction of packet size, as the packet size increased.

The graph in figure 5 appears to be a very straight line
after the first two points (at sizes 6 and 9). From 12 on, it
seems to be very straight. Therefore, figure 6 appears to level
out at just 9.29 hashes calculated per packet bit. If this trend
continues for large packets, then it means Glowworm-32 is
secure against adversaries with infinitely powerful computers,
for packets with millions of bits.

However, it is not obvious that this nice, linear trend would
continue. Glowworm-32 has a buffer of 32 words. So when a
message is more than 32 bits long, it wraps around and starts
to interact with parts of the buffer that have been seen before.
Unfortunately, a packet of size 42 will have only 14 bits in
it set to 1, which means the tree will typically be explored
only to a depth of about 14. It will never reach a depth of
32, so it will never wrap around. This is why we also went
on to perform an even larger search through the families of
weakened Glowworm: which is Glowworm-N for small N.

V. TESTING REDUCED GLOWWORM

For reduced Glowworm, we still did exhaustive searches
over all packets of a given density, to find the one that has
the highest cost. We also still did that 500 times for each
packet size, and averaged the results. And we did all that for
many packet sizes. But, in addition, we did all of that for each
value of N from 5 to 32. This was about 27 times as much
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Fig. 8. Average decode cost (number of hashes calculated while decoding)
for a worst-case packet, as a function of the packet size, for Glowworm-N,
for various packet sizes and two sizes of N. In one curve, the N is chosen for
each packet to be as small as possible without the packet being larger than
2N . The other curve is for the second-smallest N. The costs are high and the
curves are nonlinear, indicating that the system is insecure for these 2 lowest
N values.

computation as the results from the previous section, but the
results were worth it.

Figure 7 shows the average cost to decode the most pow-
erful attack packet (vertical axis) versus the value of N for
Glowworm-N (horizontal axis), with a separate curve for
each packet size. The result is surprising: the curves are
all horizontal. This means that in each case, the weakened
form of Glowworm was just as strong as the original! This
is surprising, because the weakened forms of Glowworm,
especially near the left end of each line, are cases where
Glowworm wrapped around its tiny buffer many times during
decoding. This suggests that Glowworm is inherently strong,
and doesn’t need the large amount of internal buffer, except
when working with very large packets.

We can’t guarantee that this behavior will continue all
the way up to billion-bit packets and Glowworm-32, but it
is certainly encouraging. And we do know, for certain, that
for the small cases we tested, an adversary with infinite
computational power cannot break the system, because the
attack packets that the attacker would be searching for, simply
don’t exist.

However, the lines in figure 7 are actually incomplete. The
leftmost 2 data points on each line have been deleted. That is
because those points are actually not secure. So it is interesting
to analyze them separately.

Figure 8 shows all the results that were left off of the
previous figure. For the first time, the vertical scale is now
logarithmic, because the costs have exploded exponentially!
The meaning here is clear. If you have a packet of, say, 27
bits, then clearly you need at least 5 bits to address each
position (because 25 = 32 is big enough, but 24 = 16 is
not). Therefore, there is no way to test a 27-bit packet with



Glowworm-4 or Glowworm-3 or Glowworm-2. It needs at
least Glowworm-5. Surprisingly, it turns out that the 27-bit
packet is completely secure with Glowworm-7 and above. But
Glowworm-5 and Glowworm-6 are the smallest two possible
values of N, and they turn out to be insecure. In fact, as the
figure shows, the smallest two values of N are insecure for all
the cases tried.

This suggests that Glowworm-32 would not actually be
secure for a packet of 232 bits, nor for a packet of 231 bits. But
it would be fine for a packet of 230 bits. At least, if the trends
continue. This is a useful result to know. It is unlikely that we
will ever need packets of 4 billion or 2 billion bits. One billion
certainly sounds sufficient. But if we ever do, we should treat
Glowworm-32 as only being sufficient for generating 30-bit
hashes. If we ever do need a 32-bit hash, we will have to go
to at least Glowworm-34. This would require integers of 68
bits, which is likely to be much slower on current hardware.
So this is certainly useful information to have in the future.

VI. CONCLUSIONS

In cryptography, a system is only trusted after a number
of people have tried to find attacks, and failed. Or if it can
be proved to be equivalent to another system where that has
happened. Even when researchers attack a reduced form of a
cryptographic hash and “break” it, they can never be sure that
their attack was the most efficient possible. So results on the
strength of cryptographic hashes must always be interpreted
cautiously.

The results presented here for BBC with Glowworm are
stronger than that. We have shown that, at least for small
packets or reduced Glowworm, the system is definitely secure
against all possible computational attacks, even if the attacker
has infinite computational power. Because successful attack
packets simply don’t exist. This result is stronger than a typical
result against a cryptographic hash. For traditional hashes, it is
already known that collisions must exist, and the only question
is whether they can be found efficiently. But in this paper, we
have shown that effective attack packets simply don’t exist. At
least not for those small cases. So this gives us an unusually
high degree of confidence in the security of the system.

Of course, for large packets with full Glowworm, it is
theoretically possible that some unknown attack can still exist.
But such an attack would be somewhat surprising, given
the guaranteed non-existence of attacks on smaller versions.
Especially since these smaller versions were still large enough
so that a message would wrap around the buffer multiple times.
Therefore, we consider it very likely that no such attack can
exist on the larger system, either.

Two interesting results were found, which should guide
the choices of parameters in practical uses of BBC with
Glowworm. First, for packets of size 2k bits, Glowworm-N
is secure for N = k + 2, and there is no need for (and no
additional security from) increasing N beyond that. Second,
for N = k + 1 and N = k, the system is no longer secure.
This suggests that standard Glowworm (which is Glowworm-
32) should only be used for a 30-bit hash or smaller, not a

32-bit hash. Only its lowest 30 bits of output should be used,
rather than the lowest 32 bits. This should still be sufficient
for real-world applications, since it would allow packets with
over a billion bits. But it is useful to know that if a need ever
arises for more packet bits than that, then it will be necessary
to use Glowworm-N with an N greater than 32, and so with
integer variables of more than 64 bits.
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