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Abstract

Combining elements of the theory of dynamic pro-
gramming with features appropriate for on-line learn-
ing has led to an approach Watkins has called incre-
mental dynamic programming. Here we adopt this
incremental dynamic programming point of view and
obtain some preliminary mathematical results rele-
vant to understanding the capabilities and limitations
of actor-critic learning systems. Examples of such
systems are Samuel’s learning checker player, Hol-
land’s bucket brigade algorithm, Witten’s adaptive
controller, and the adaptive heuristic critic algorithm
of Barto, Sutton, and Anderson. Particular empha-
sis here is on the effect of complete asynchrony in
the updating of the actor and the critic across indi-
vidual states or state-action pairs. The main results
are that, while convergence to optimal performance
is not guaranteed in general, there are a number of
situations in which such convergence is assured.

1 Introduction

The purpose of this paper is to present some results
in the theory of incremental dynamic programming
(Watkins, 1989), which combines elements of the the-
ory of dynamic programming with features appropri-
ate for on-line learning in the absence of an a prior:
model of the environment. An excellent discussion
of this approach is provided by Barto, Sutton, and
Watkins (1989), who point out that it may be re-
garded as a direct method of adaptive control. An-
other investigator who has emphasized the poten-
tial role of dynamic-programming-based strategies in
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biological and artificial learning systems is Werbos
(1987), who has used the term heuristic dynamic pro-
gramming for his approach.

The results presented here concern the use of actor-
critic learning systems, which consist of two jointly
adaptive modules. One module, called the actor, im-
plements the current policy but also learns to improve
its choice of action in order to optimize the reward
provided by the other module, which is called the
critic. The reward provided by the critic is intended
to represent an estimate of the expected long-term
external reward, but the critic must also adapt in
order both to improve the accuracy of its estimate
given the current policy and to keep up with the
ever-changing policy as the actor learns. There are
a number of related algorithms that can be consid-
ered to have this particular form, including that used
in Samuel’s (1957) learning checker player, Holland’s
(1986) bucket brigade algorithm, Witten’s (1977) adap-
tive controller, and the adaptive heuristic critic algo-
rithm of Barto, Sutton, and Anderson (1983). Sutton
(1984; 1988) appears to be one of the first to call at-
tention to a common basis for these algorithms.

The main question addressed by the results pre-
sented here concerns the effect of asynchronous adap-
tation of the actor and critic modules at individual
states (or state-action pairs, as appropriate). That
is, we ask: What happens if the actor and critic are
updated state by state in no particular order? Will
such joint incremental adaptation always succeed at
finding optimal policies, or can it sometimes fail? Ig-
nored here are a number of important additional is-
sues we intend to address in later work, including
problems of dealing with unknown stochastic envi-
ronments. Here we simply assume that all transition
probabilities and expected rewards can be determined
exactly from interaction with the initially unknown
environment. This includes as a special case the situ-
ation when all transitions and rewards are determin-
istic, so the reader may prefer to imagine that this is
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the case we are actually treating.! Another simplify-
ing assumption we make is to consider arbitrary se-
quences of application of certain one-state-at-a-time
operators to actor-critic systems without regard for
how those states come to be visited by the learning
system.

2 Mathematical Preliminaries

Here we give the mathematical formulation of the
type of problem addressed in this paper and intro-
duce appropriate definitions and notational conven-
tions. We also summarize some standard computa-
tional strategies from the theory of dynamic program-
ming and describe additional elementary results rele-
vant to the incremental point of view adopted here.

2.1 Markov Environment

Let X be a finite state space and A a finite action
space. Welet Il = {w : X — A} denote the set of sta-

tionary, non-randomized policies, withV = {v : X —» R}

denoting the set of value functions. For any finite set
S we denote its cardinality by |S].

We assume given a Markov environment, and we
let f(z,a) denote the randomly determined succes-
sor of state z when action a is chosen. The behavior
of this random next-state function is determined by
the transition probabilities pg, = Pr{f(z,a) = y}
for z,y € X and a € A. We also assume that associ-
ated with each choice of action a at each state z is a
randomly determined immediate reward »(z, a), with
R(z,a) = E{r(z,a)} denoting its expected value.

2.2 Total Expected Discounted Return

The results presented here are all based on the use of
some fixed discounting parameter vy € (0, 1), which is
used to define a measure of performance on policies
as follows. For any policy w, define v™ € V, the
total ezpected discounted return (or just the return)
for w, to be that value function assigning to state z
the quantity

v (z)=F {Z’yt'r'(zt,w(zt)) | 2o = z}

where zg, z1,Z2,... i1s a random sequence of states
determined by zo = z and z;41 = f(&z4, 7(z:)) for
each ¢t > 0.

We let v* denote the ideal evaluation function, or

the return from any optimal policy.

!Nevertheless, with the intent of eventually extending these
results, we adhere throughout to the probabilistic formulation
used in the theory of stochastic dynamic programming (Ross,
1983).

2.3 Markov Decision Task

For purposes of this paper we define a (stationary, fi-
nite) Markov decision task, to be a 5-tuple (X, 4,7, f,7)
consisting of a finite state set X, finite action set A,
stationary random reward function r, stationary ran-
dom transition function f, and discount parameter
v. As discussed earlier, we adopt the assumption
throughout that all transition probabilities and ex-
pected rewards can be determined exactly from in-
teraction with the environment. This includes as a
special case the situation when the transition func-
tion f and reward function r are deterministic.

2.4 Actor-Critic Architecture

We regard the internal state of an actor-critic archi-
tecture as simply an ordered pair (w,v) € II x V.
Whatever learning algorithm is used to adapt the ac-
tor is considered to modify the policy =, while learn-
ing in the critic alters the value function v. With the
system initialized to some internal state (7o, vg), our
interest is in analyzing properties of the succession of
internal states that result from applying some partic-
ular learning algorithm (i.e., sequence of operators).
In particular, we are concerned with the question of
whether the system will eventually learn to perform
optimally.

2.5 Local Backup Operators
For given v € V, z € X, and a € A, define

L'(z,a) = E{r(z,a)+7v(f(z,a))}

= R(z,a)+7v Z Pzy (Y)-
yex

This quantity represents a one-step lookahead value,
or the expected reward that would be received if,
starting in state z, action a is selected, giving rise to
an immediate reward of 7(z, a), and then the process
terminates with an additional reward of yv(f(z, a)).

Then, for each z € X and =« € II, define the oper-
ator B : V — V by

- L (z, n(z ify==z
By u(y) :{ v(y() ) ot}:zerwise.

That is, By v is the value function obtained from v by
replacing v(z) by the one-step lookahead value along
7. Also, for each z € X, define the operator B; :
IxV —-IxV by

Bg(m,v) = (7, BZv).

We refer to operators of either form as local backup
operators.
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2.6 Local Policy Improvement Opera-
tors

For each z € X, a € A, and v € V, define the opera-
tor I , : II — II by
a ify==

and LY(z,a) > LY(z, n(z))
7(y) otherwise.

L om(y) =

Also, for each z € X and a € A, define the operator
ILo:IIxV I xV by

Iz a(m,v) = (I;"a‘lr, v).

In addition, for each z € X and v € V, define the
operator I} : II — II by

a ify==
Lw(y) = and LY(z,a) = maxaca LY (2, )
7(y) otherwise,
where it is understood that some method is used to
choose among several equal candidates for giving the

maximum one-step lookahead value. Also, for each
z € X, define the operator I, : I x V — Il x V by

I (7, v) = (Inm,v).

We refer to any of these operators as local policy
improvement operators. The operator I , alters the
policy at state # by comparing the lookahead values
for the current policy and for action a while I, consid-
ers all possible actions. As we discuss below, I, can
be viewed as representing a step in both the value
iteration and policy iteration procedures. The reason
we also wish to consider the I;, operators is that
they represent an even finer-grained incrementality,
thus conforming to the overall spirit of our approach.
In some applications, particularly when there are a
large number of actions, it may be difficult or compu-
tationally infeasible to compare all possible actions.
Related to this is the possibility that the need for fast
reaction may preclude consideration of all but some
small number of alternative actions at any one time.

Note that both the I, and I; operators make
changes to a policy based on comparison of the looka-
head values of two or more actions. In some situations
it may not be realistic to assume that even this is pos-
sible. Later we will introduce additional operators
which do not require comparing two or more looka-
head values in this way but instead involve comparing
a lookahead value with the current value for a state.

2.7 Convergence to Optimality Under
Asynchronous Operator Applica-
tion

The results presented in this paper all deal with prob-

lems having the following general form. We assume

given a set S of operators mapping I x V - II x V,
and we apply a sequence T3, T3, ... of these operators
in succession, beginning with an initial policy-value
pair (mo, vo) € I x V. This gives rise to a sequence of
policy-value pairs (g, o), (71, v1), (72, v2), . . ., where
(7, vk) = Tk(mr—1,vk—1) for all k > 0. For any such
set S, we say that a result holds under asynchronous
application of (the operators from) S if it holds for
any sequence of operators from § in which each oper-
ator appears infinitely often. In particular, we want
to identify situations when the limiting behavior of
the system is optimal, which we formulate as follows:
Let us say that such a sequence of policy-value pairs
converges to optimality if lim;_, v; = v* and there
exists M such that every =; is optimal when ¢ > M.
In what follows we shorten the notation for the
various sets of operators under consideration by al-
ways regarding any set of subscripted operators to
mean the set of all such operators. For example,
{BgI: o} is short for {ByI. . |z € X,a € A}

2.8 Computation of the Return for a
Stationary Policy

Since v™(z) = L*" (z, n(z)) for all states z when = is
a stationary policy, v™ can be computed by solving
the system of |X| linear equations

v"(z) = R(z,7(z)) + v Z p;rg(f)v"(y).
yeX

This system can be solved in a number of ways, but
most interesting from the point of view of incremen-
tal dynamic programming are techniques that begin
with an arbitrary value function v and involve iter-
ative updating of the values {v(z) | z € X} by re-
placing each by L' (z,n(z)). The following result,
whose easy proof we omit, shows that the correct re-
sult is obtained even if this updating is performed
completely asynchronously across states.

Proposition 1 If {B; | z € X} is applied asyn-
chronously to any arbitrary (mo,vo), then v; — v™
as i — 00.

2.9 Policy Iteration

The policy iteration procedure determines an optimal
policy by starting with any initial policy n¢ and re-
peating the following step: For policy 7y, compute
its return v™* and then define policy 741 to satisfy

AN (z,mrt1(2)) = max L (z,a)

for each z. The process terminates as soon as vg(z) =
vept1(z) for all z.
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We can use Proposition 1 to define a sequence
of operators to be applied to an initial (mo, vo) that
essentially carries out the policy iteration strategy,
once we observe that it is only necesssary to compute
9™ to a sufficiently close approximation in the policy
iteration procedure since X and A are finite. It then
follows that application of this particular sequence of
operators to (7o, ¥g) gives rise to a sequence of policy-
value pairs that converges to optimality.

2.10 Value Iteration

The value iteration procedure determines an optimal
policy by first computing v*. Any policy 7 for which

AN (z,n(z)) = max AN (z, )

will then be an optimal policy. That is, an optimal
policy is determined by choosing for each z the action
giving the maximum one-step lookahead value when
v* is used to determine the evaluation of the successor
states for z.

The ideal evaluation function v* is the unique so-
lution to the system of |X| nonlinear equations

v¥(z) = max R(z,a)+v X;(PZyv*(y)
ye

The value iteration procedure for solving these equa-
tions involves starting with an arbitrary value func-
tion v and then iteratively updating the values {v(z) |
z € X} by replacing each by max, L”(z, @). Watkins
(1989) has proved that this value iteration method
may be carried out completely asynchronously across
states and has used it as the basis for a particular al-
gorithm called @-learning. We omit the easy proof of
this result and restate it in the following form, which
is more appropriate for our purposes.

Proposition 2 Asynchronous application of the set
of operators {ByI,} to an arbitrary (mo,vo) yields
convergence to optimality.

3 Main Results

The various ways of carrying out asynchronous value
iteration and the method described above for carrying
out policy iteration amount to application of certain
constrained sequences of local backup and policy im-
provement operators, any of which give rise to conver-
gence to optimality. These particular sequences can
be interpreted as enforcing certain forms of coordina-
tion when adapting the components of an actor-critic
system. Here we consider what happens if such co-
ordination is not enforced. In the interest of brevity,
we give all results without proof.

3.1 Use of Policy Operators That Com-
pare Multiple Actions

The following is a key result.

Theorem 1 Suppose that an arbitrary sequence of
operators from {B;} U {I; .} in which each operator
appears infinitely often is applied to some (mo,vo).
Then, if lim;_, o vi(2) ezists for each © € X, the re-
sulting sequence of policy-value pairs converges to op-
timality.

We also have the following collection of negative
results.

Theorem 2 Convergence to optimality need not oc-
cur under asynchronous application of any of the fol-
lowing sets of operators:

(a) {B:}U{L};

(6) {Bz}U{B:L};

(¢c) {Bzls,a};

(d) {I.Bs };

(e) {Iz,aBz}.

By Theorem 1, the only way such convergence
to optimality can fail to occur is when the sequence
of value functions approaches no limit. Theorem 2
is proved by exhibiting particular Markov decision
tasks, initial policy-value pairs, and appropriate se-
quences of operators for which the resulting sequence
of policy-value pairs cycles endlessly. In fact, there
are two Markov environments, each having 6 states
and 2 actions, which can be used for all 5 cases.

Theorem 1 is useful for identifying sequences of
local backup and policy improvement operators and
initial policy-value pairs such that convergence to op-
timality is guaranteed, as in the following result.

Theorem 3 If LV (z,mo(z)) > vo(z) for allz € X,
then asynchronous application of {By} U {I; .} to
(70, vo) ytelds convergence to optimality.

This result follows from Theorem 1 since it can
be shown that the sequence wvo(z), vi(z), va(z),... is
nondecreasing and bounded above for each z. We
single out the following two noteworthy corollaries to
this theorem, the second of which provides an inter-
esting generalization of policy iteration.

Corollary 1 If all the ezpected rewards R(z,a) are
nonnegative and vo(z) = 0 for allz, then asynchronous
application of {By}U{I; .} to (w0, vo) yields conver-
gence to optimality.

Corollary 2 If vg = v™, then asynchronous appli-

cation of {Bgz} U {I; .} to (mo,vo) yields convergence
to optimality.
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Another way to guarantee convergence of the value
function is to impose certain conditions on the dis-
count parameter v, which leads to other interesting
ways that convergence to optimality may be assured.

Theorem 4 Asynchronous application of the set S
of operators to an arbitrary (mo,vo) yields conver-
gence to optimality if:

(a) S ={B}U{L:} and v < 1/2; or

(60) S={B:} U{l;a} and vy < 1/|A|.

Since it is common to use a discount parameter
having a value reasonably close to 1, this result would
not appear to be particularly useful. Nevertheless,
we will see that it has interesting consequences for
more practical values of v when we consider the use
of multi-step backup operators below.

The following result shows that counterexamples
like those used to establish Theorem 2 are rare, in
some sense.

Theorem 5 Suppose that a sequence of operators is
obtained by independent random sampling from a fized
distribution over {By} U{I; o} such that every oper-
ator has nonzero probability. Then application of this
sequence of operators to any initial policy-value pair
(7o, vo) yields convergence to optimality with proba-
bility 1.

3.2 Use of Policy Operators That Ex-
amine Single Actions

Now we consider alternative policy improvement op-
erators that do not require comparing two or more
lookahead values in order to make changes to a policy.
These operators work by comparing the lookahead
value along some candidate action with the current
value for the state in question.
For each z € X, a € A, and v € V, define the
operator Jg , : I — II by
JY n(y) = { a ify =z and L"(z,a) > v(z)

7(y) otherwise.

Also, for each z € X and a € A, define the operator
Jz,o : I xV =1 xV by

Jo,a(m,v) = (J;',ajr, v).

Theorem 6 If L¥°(z,mo(z)) > vo(z) for allz € X,
then asynchronous application of {B,} U {Jz,.} to
(70, vo) yields convergence to optimality.

We can construct an algorithm roughly analogous
to asynchronous value iteration but requiring no com-
parisons of multiple actions by combining the use of
the J operators with the use of certain conditional

backup operators, which we now define. We first de-
fine Czo:V — V by

Cqov(y) = { ;IEZ})({U(E)’LU (z,0)} ify=2

and then, in a harmless abuse of notation, we further
define C; o : I x V - Il x V by

otherwise,

Cq,a(m,v) = (Cg,qm,v).

Theorem 7 If vo(z) < v*(z) for all states z, then
asynchronous application of {Cq oJz 0} to (mo, vo) yields
convergence to optimality.

3.3 Use of Multi-Step Backup Opera-
tors

It is convenient in what follows to abuse notation
slightly and define L”(z,7), where 7 is a policy, to
mean the same as L(z,7(z)). We then extend this
notion as follows. For given v € V, z € X, w € II,
and positive integer n, define

L*"(z,n)=F {z_: yir(ze, w(2:)) + ’y”v(zn)}

t=0

where zo, 21, Z2,...,Z, is a random finite sequence of
states determined by zg = z and z:41 = f(&, 7(z:))
for each t € [0,n). This is an n-step generalization
of the one-step lookahead value L*'!(z, 7) = L¥(z, 7).
Note also that it represents an approximation to v™ (z)
in which the tail of the infinite series is replaced by
Y u(zn).

Then, for each z € X, m € II, and positive integer
n, define the operator B;'" : V — V by

o | (e, 7) ify=z.
Bz"u(y) = { v(y) otherwise.

That is, BJ™v is the value function obtained from
v by replacing v(z) by the n-step lookahead value
along . Also, for each z € X, define the operator
B . MIxV STxV by

B (x,v) = (BF™x, ).

We call operators of either form local multi-step backup
operators.
The next result is a generalization of Theorem 4.

Theorem 8 Asynchronous application of the set S
of operators to an arbitrary (mo,vo) yields conver-
gence to optimality if:

(a) S = {Ba(:n)} U{IL.} and ™ < 1/2; or
(b)S = {Bg“)} U{Ls,q} and v* < 1/|A].
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4 Summary

We have presented results here that address questions
of convergence to optimality when the actor and critic
are updated completely asynchronously across indi-
vidual states (or, in some cases, state-action pairs).
The main results are that, while there are cases when
such convergence may fail, there are a number of rea-
sonably general situations in which such convergence
is guaranteed. While these results should be regarded
as preliminary because of the simplifying assumptions
made in their derivation, it is interesting to note that
there is at least one interesting class of algorithms to
which these results are directly applicable in their cur-
rent form—namely, certain forms of Sutton’s (1990)
relazation planning algorithms, in which learning oc-
curs while arbitrarily selected state-action pairs are
explored in a model that is gradually acquired on line.
Furthermore, these results provide insights into the
potential range of asynchronous actor-critic adapta-
tion behaviors, and we believe that this set of prelimi-
nary results can serve as the basis for deriving further
results applicable to other useful learning algorithms.
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