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Abstract   Learning controllers based on dynamic programming
require some means of storing arbitrary functions and finding
global minima within cross sections of those functions.  There
are many general methods for learning and representing
functions, including polynomials, multi-layer perceptrons with
backpropagation, and radial basis functions, but these systems
do not allow the minima to be found easily.  A method is
presented here for learning and finding the minima of all cross
sections of an arbitrary, smooth function.  This method is
applicable to any general function approximation system that
learns smooth functions from examples.  Mathematical
properties of this approach are described, applications to
learning control are discussed, and simulation results are
presented.

INTRODUCTION

Optimal control of a nonlinear, poorly modeled system is a
difficult problem.  In recent years, a number of systems have
been designed for this problem that are based on dynamic
programming [1]-[5],[8],[9],[12].  Such systems generally
have two significant properties: they must learn functions
from experience, and they must be able to find the minima of
these functions.  Many well-studied methods are widely used
for learning arbitrary functions.  These include high-order
polynomials, multi-layer perceptrons with backpropagation
learning [6],[7], and radial basis functions.  Unfortunately, it
is often impossible to find the minimum of a function
analytically when it is represented using these techniques.
The problem to be solved can be summarized as follows.
Given a vector x, find the vector u that minimizes f(x,u),
where f is an arbitrary, smooth function.  This paper proposes
one method for solving the problem by learning a function
F(x,u,p) whose domain has one additional dimension.  The
function F(x,u,0) is trained to be equal to f(x,u), and the
function F(x,u,p) for p>0 is trained in accordance with a
simple differential equation.

MINIMIZATION

The approach presented here will be applied to a discrete
problem first, then to the continuous problem.  Consider the
problem of finding the minimum of the following list of
digits:

4 5 2 4 6 9 4 3

One way to solve the problem is to take each pair of digits
in the list and write the minimum of that pair on the line
above.  Repeating this gives the triangular array of digits
shown in fig. 1.
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Fig 1. Triangular array of digits.

Given an array generated in this manner, the minimum of
the list will always be found at the top.  The location of the
minimum can be found by starting at the top and repeatedly
moving to the minimum of the two adjacent numbers on the
line below, as shown by the shaded path in fig. 1.  This
gradient descent path always ends at the minimum digit in
the original list.

The following two conditions uniquely specify each of the
values in the triangular array.
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• The bottom row of the array must consist of the list to be
minimized.  In other words, if A is the kth number on the
bottom row of the array, and N is the kth number in the
list to be minimized, then:

A = N (1)

• For any adjacent numbers A, B, and C in this
arrangement:

A
B C

the following condition holds:

min B– A,C – A( )= 0 (2)

Given a triangular array initialized to arbitrary values, the
two conditions can be used to find the minimum of a list.
This is done by selecting a value A from the array at random.
This value is then modified to satisfy the above conditions.
If this is done repeatedly, then the bottom row gradually
becomes the same as the list to be minimized, and the upper
rows gradually come to reflect the minimum of the bottom
row.  With probability 1, the array will converge to the
desired values.

This approach can be generalized to find the minimum of a
continuous function.  Instead of the minimum digit of a list,
the problem is to find the minimum value of a function f(u)
over the interval [-1,1].  Just as the minimum digit was found
using a triangular array of digits, so the minimum of f can be
found using a function defined over a triangular region.  This
function can be stored in a connectionist network with two
inputs, u and p,  and one output, F(u,p).  The network can be
any general function approximation system, such as a
backpropagation, multi-layer perceptron network.

u

1.0-1.0

1.0

0

A

p

Fig. 2. Triangular domain of function F(u,p).

The inputs, u and p, are the axes in fig. 2.  Given a point
on the triangle or within it, the network will output the value
F(u,p) associated with that point.  Equation (3) is the
continuous version of (1).

∀u ∈ –1,1[ ] F(u,0) = f (u) (3)

In (2), the value at point A is determined by the minimum
of two differences.  These differences are taken between
adjacent numbers in diagonal directions.  For the continuous
problem, those differences are replaced by directional
derivatives along the diagonal directions.  Define
D(u1,p1)F(u,p) to be the directional derivative of F in the
direction (u1,p1) evaluated at (u,p).  The continuous version
of (2) is (4).

∀p ∈ 0,1( ], u ∈ –(1– p),1– p[ ]
min D

(–1,–1)
F(u, p),D

(1,–1)
F(u, p)( )= 0

(4)

Equations (3) and (4) describe the properties that the
function F must have.  It can be proven that if the function
f(u) and its first derivative are continuous, then there does
exist a function F that satisfies (3) and (4).  Furthermore, it
can be shown that this solution is unique, is continuous, and
can be written in closed form as:

∀p ∈ 0,1( ], u ∈ –(1– p),1– p[ ]
F(u, p) = min

v∈u–p,u+p[ ]
f (v)( )

(5)

The value of F at a given point is the minimum of f over
some region.  That region is small for small p and larger for
larger p.  For p=1 the minimum is over the entire domain,
[–1,1].

Once F has been found, the minimum of f(u) is simply
F(0,1).  A value of u that minimizes f(u) can be found by the
gradient descent process that starts at F(0,1) and moves at a
steady rate in the negative p direction, while following the
gradient in the u direction.  When p reaches zero, u will be a
value that minimizes f(u).

To find the function F over the triangular domain, an
approximation of F will need to be stored and gradually
improved.  Assume that F is stored in a function
approximation system that is continuous and has a
continuous gradient at every point.  F will be improved using
(3) and (4), which requires finding the minimum of two
directional derivatives.  Let m be the minimum of the two
directional derivatives, which can be calculated quickly
using (6).

m = min D(–1,–1) F(u, p), D(1,–1) F(u, p)( )
= min ∇F ⋅
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(6)

If u is a two dimensional vector and p remains a scalar,
then F becomes a function over the points in a pyramid
instead of in a triangle.  If u and d are n dimensional vectors
and p is scalar, then (3) and (4) become (7) and (8).

∀i ∈ 1,2,. ..,n{ }, ui ∈ –1,1[ ] F(u,0) = f (u) (7)

∀i ∈ 1,2,. ..,n{ }, p ∈ 0,1( ],ui ∈ –(1 – p),1– p[ ]
min

d∈ –1,1{ }n
D(d ,–1)F(u, p)( )= 0

(8)

If the function f(u) is continuous and has a continuous
gradient, then the function F that satisfies (7) and (8) exists,
is unique, is continuous, and can be written in closed form
as:

∀i ∈ 1,2,. ..,n{ }, p ∈ 0,1( ],ui ∈ –(1 – p),1– p[ ]
F(u,p) = min

v|vi∈ui –p,ui+p 

 
 
 

 

 
 
 

 
  

  

 
  

  

f (v)( )
(9)

The differential equations can be solved by an iterative
method, using a network to store the current approximation
of F.  The network used to solve these equations should have
n+1 inputs (p and the elements of u), and one output, F.  The
stored function should be repeatedly adjusted at randomly-
chosen points so that (7) and (8) are satisfied.

The above discussion assumes there is only one function to
minimize, f(u).  There could also be a parameterized family
of functions, each of which is to be minimized.  In that case,
all of the above remains true for each of these functions.  The
entire family of functions can be stored in a single network
and trained simultaneously, possibly leading to useful
generalization between functions.

In summary, to find a u that minimizes f(x,u) for each
possible value of x, the following algorithm should be used.

ALGORITHM TO MINIMIZE  f(x,u)

• Initialize the net to a convenient function (e.g. F=0)
• Repeat the following steps

• Randomly choose a value for x
• Randomly choose p to be either zero or a value from

(0,1],
• Randomly choose each element ui  from [–(1–p),1–p]
• If p = 0 then

• Train the net to increase F(x,u,p)  by an amount
proportional to f(x,u)–F(x,u,p)

• else
• Train the net to increase F(u,p) by an amount

proportional to

∂
∂

∂
∂

F p

p

F p

uii

n( , , ) ( , , )x xu u+
=
∑

1 (10)

Expression (10) is the multidimensional version of (6), and
represents the negative of the minimum of the directional
derivatives.  The network is adjusted to make this value
closer to zero, thus satisfying (8).

As this procedure is repeated, the function F(x,u,0)
changes to become equal to f(x,u).  The function F(x,u,p) for
p>0 changes to reflect the minimum of f(x,u).  After training,
the value F(x,0,1) is equal to the minimum of f(x,u).

Note that if the plus sign before the summation in (10) is
changed to a minus sign, then the algorithm finds the
maximum value instead of the minimum value.

SIMULATION RESULTS

Fig. 3 shows simulation results.  A three-layer, sigmoidal,
backpropagation network was used to learn the function
F(u,p).  The top graph shows the function to be minimized,
f(u).  The bottom graph shows the function F(u,p) after
learning.  As desired, the network converged to the correct
function, with the minimum value of f(u) at the apex of the
triangle, and a valley leading from the apex to the
minimizing value of u.

                   

Fig. 3. The function f(u) to minimize (top), and the function
F(u,p) that the network learned (bottom).



4

One feature of this algorithm is that, when minimizing a
function with two local minima, it will learn valleys of low
values starting from those two points and heading toward the
apex of the triangle, with the lower valley ending at the apex
and the higher valley ending before it reaches the apex.  This
is useful if the function f(u) changes, as is often the case in a
dynamic programming system.  If f(u) changes slightly so
that the other local minimum becomes lower, then all the
network must do is extend one valley and shorten the other
one.  For most types of networks, shifting ridges and valleys
is a faster operation than learning to create new valleys.  This
suggests that this algorithm should be capable of tracking the
minimum of a slowly changing function.  It has the further
advantage of not needing to be reset or started over whenever
the function being minimized changes.  These are important
properties if this system is used as part of a dynamic
programming system.

GRADIENT DESCENT

Once the network has learned F, it is easy to find the
minimum of f(x,u) for a given u.  It is simply the value
F(x,0,1).  The u that yields that minimum value can be found
by a gradient descent method.  Algorithm GRAD returns that
value of u.

Algorithm GRAD(x,u,p)

• Initialize each ui to 0
• For p decreasing from 1 to 0 by some small step size s,

loop:
• Calculate each element of the minimum directional 

derivative vector:

di = –s ⋅ sgn
∂F(x,u,p)

∂u
i

 

 
  

 

 
  

(11)

• u �  u + d
• End loop
• Return u

This algorithm is useful after learning is finished, but it
might also be useful during learning.  Learning might be
improved if expression (10) in the learning algorithm were
replaced with (12).

F(x,GRAD(x,u, p),0) – F(x ,u, p) (12)

This would allow information to flow towards the apex of the
triangle more quickly, and might allow learning in fewer
training steps.  It would, however, increase the computational
cost per time step during training, since it involves an entire
gradient descent on each step.

Q-LEARNING

The most natural use of this minimization technique for
learning control is as a component of a Q-learning system.
Q-learning is a form of dynamic programming developed and
proven optimal by Watkins [11].  It requires  a number to be
stored for each state-action pair (x,u), where x is the state of
the system being controlled at a given point in time, and u is
the control action chosen by the controller in response to that
state.  Both x and u are vectors, possibly high-dimensional
vectors.  If the system is in state x(t) and the controller
responds with action u(t), then the resulting state will be
x(t+1), and the system incurs a cost given by the function
C(x(t),u(t)).  After performing a given action, the associated
value Q(x(t),u(t)) should be updated to be closer to the value:

C x(t ),u(t )( )+ γ ⋅min
u

Q x(t +1),u( )( )
(13)

where �  is the discount factor and lies in the range [0,1].
After the Q-values have converged the controller should

always respond to a state x by choosing the action u that
minimizes Q(x,u).  If x and u can only take on a finite
number of values, and if the Q-values are stored in a table,
then Watkins has proven that, if each action is performed
sufficiently often in each state during learning, then this
method will result in a controller that minimizes the total,
discounted cost:

γ t C x(t ),u(t )( )
t = 0

∞

∑
(14)

When the values are continuous, the Q function must be
approximated with some function approximation system, and
the problem of finding the minimum becomes more difficult.
The minimization technique presented here incrementally
works on finding the minimum for many states
simultaneously.  It may also allow useful generalization.
Fig. 4 gives an example of a case where useful generalization
would be expected to occur.

u

Q

u u1 2

u

Q

u u1 2

Fig. 4.  Q-values for state x1 (left) and x2 (right).

In fig. 4, states x1 and x2 are assumed to be near each
other in state space.  The best action in state x1 is u1 and in
state x2 is u2.  Using the proposed method, the F function
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contains valleys leading to both local minima in both states,
with one valley slightly lower than the other in each case.  If
states x1 and x2 are near each other, and if it is only trained
with data from x1 and x2 , then it may tend to generalize in
the states between x1 and x2.  As the state moves from x1 to
x2, the valley at u1 gradually rises, and the valley at u2
gradually drops.  The action recommended by the system
will therefore be u1 up to the point where the valleys are
equal, and will be u2 thereafter.  This is a reasonable
generalization, and will lead to recommendations that are
monotonically improving.

Less useful generalization would be expected from a
learning controller using a policy network.  A policy network
simply stores the optimal action u for each x.  If such a
network were trained only for x1 and x2, it would
recommend u1 at x1 and u2 at x2.  In the intermediate states
between x1 and x2 it would recommend actions between u1
and u2.  In this example, these are the worst possible actions.
This suggests that if it is likely that the Q functions will have
local minima (at least during learning), then a policy network
may be a less useful approach to learning control.  The
method using the function F as proposed here may be better.

FINDING SADDLEPOINTS

Dynamic programming networks have been used
successfully to learn good strategies for board games [10],
and may be useful for playing differential games.
Differential games are games where the control actions are
done continuously, such as in two player video games.  Each
player controls certain elements of u, and the entire state is

visible to both players and is represented by x.  For some
games the optimal strategy is a function of the state.  For
other games, the optimal strategy is to pick actions
stochastically, where the probabilities are functions of the
state.  Some games do not even have optimal strategies.

One particularly interesting game always has a
deterministic optimal strategy.  One player acts as a
controller, trying to minimize cost, and the other player acts
as a disturbance, trying to maximize cost.  On each time step,
the controller looks at the state and chooses an action.  The
disturbance then looks at that state and the controller’s
action, and chooses its own action. Finally, these two actions
are performed, and the state changes.  This game is simply
another way of viewing robust control [1].  The goal of
robust control is to build a controller that is optimal, not
under the average disturbance conditions, but under worst-
case disturbance conditions.  “Worst case”  is defined as
whatever disturbances are worst for the controller built.
Thus, if a system is capable of learning to play differential
games with deterministic strategies, then it is also able to
learn robust, optimal control.

A learning system such as Q-learning can be modified to
handle games.  The primary difference is that instead of
finding minima it must find saddlepoints.  If player number
one controls action u1 and player number two controls action
u2, then the optimal action for each player in state x is the
action pair (u1,u2), such that:

Q( x,u1,u2 ) = minv maxw Q(x ,v,w)
(15)
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In this case Q represents the value of the game if action
(u1,u2) is performed followed by optimal playing thereafter.
A low Q-value is in player one’s favor, and a high value is in
player two’s favor.  Equation (15) represents the value of the
game if player two has the advantage of knowing u1(t) before
choosing u2(t), as in the case of robust control.  If the min
and max were reversed, then player one would have that
advantage.   In many games, the value remains unchanged
when the min and max are reversed; in these games, the point
(u1,u2) is called the saddlepoint.  It is assumed here that such
a saddlepoint exists.  Saddlepoints are generally more
difficult to find than minima, yet the method presented here
can be extended to find saddlepoints.

Fig. 4 shows the domain of the F function used to
minimize f(u1,u2).  The domain is a pyramid, and after
learning the minimum will appear at the top.  If the sign of
the summation in (10) were changed, then the maximum
would appear at the top.  Fig. 5 shows the domain for finding
the maximum for each possible u1.  For each u1, there is a
triangular region used to find the maximum of f(u1,u2).  This
is analogous to the triangle in fig. 2.  During training, the top
edge of this prism comes to represent the maxima of each of
these cross sections.  Fig. 6 shows the single triangle used to
find the minima of these maxima.  The base of the triangle
consists of all of the maxima, and the apex of the triangle
comes to represent the minimum of the maxima.  Both the
lower prism and the upper triangle could be trained
simultaneously, and the saddlepoint value would eventually
appear at the top.  Thus the value at the top will be the value
of the game.  The (u1,u2) value can be found by starting at
the top and doing gradient descent in the p and u1 directions
for half the distance, then doing gradient ascent in the p and
u2 directions for the rest of the distance.  The fact that the
new minimization method solves multiple minimization
problems in parallel makes it particularly useful for finding
saddlepoints.  Other minimization methods based on gradient
descent, simulated annealing, etc., would be more difficult to
adapt to the saddlepoint problem.

CONCLUSIONS

An algorithm has been presented for finding the minimum
of each of a family of parameterized functions.  Simulation
of the algorithm demonstrates its ability to work on a simple
problem.  The properties of the algorithm appear to make it
useful for learning control using dynamic programming
techniques, especially Q-learning.  It is also extendable to
finding saddlepoints, since it can work on an infinite number
of minimization problems in parallel.  These appear to be
fruitful areas for further research.
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Fig. 4.  Domain of F(u1,u2,p) when finding the
minimum of f(u1,u2) over all u1,u2.
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Fig. 5.  Domain of F(u1,u2,p) when finding the maximum of
        f(u1,u2) for each possible u1.  Each triangle is

analogous to the triangle in fig. 2.
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� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
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� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
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� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� �� �� �� �� �� �� �� �� �� �� �� �

Fig. 6.  Domain of F(u1,u2,p) when finding the minimum
         over  u1of the maximum of f(u1,u2).  The upper

triangle finds the minimum of the maxima.
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