Residual Algorithms:
Reinforcement Learning with Function Approximation

Machine Learning Conference
July 1995

Leemon Baird
U.S. Air Force Academy
baird@cs.usafa.af.mil
http://kirk.usafa.af.mil/~baird
A well-behaved function approximation system:

- All value functions can be represented

- Changing the value of one state with backprop:

 changes neighbors by at most 2/3 as much

- Basically a lookup table plus one generalizing weight (w_0)
Reinforcement learning can fail to converge:

- Learning equation: $\Delta w = -\alpha (R + \gamma v_{\text{new}} - v_{\text{old}}) \frac{\partial v_{\text{old}}}{w}$

- Every transition updated equally often

- Learning is a special case of TD(0), Q-learning + backprop, and incremental value iteration + backprop

- If state 6 starts high, it climbs more often than falls.

- All states/weights diverge to $\pm\infty$
Function approximation system is linear:

- Value is dot product of weight and state vectors:

State 1: 1 2 0 0 0 0 0 0 0
State 2: 1 0 2 0 0 0 0 0
State 3: 1 0 0 2 0 0 0 0
State 4: 1 0 0 0 2 0 0 0
State 5: 1 0 0 0 0 2 0 0
State 6: 2 0 0 0 0 0 0 1

- State vectors are linearly independent

- State vectors have same magnitude (1, 2, ∞ norms)
Gradient descent on mean squared error:

- Define mean squared Bellman residual:

\[E = \sum (R + \gamma v_{new} - v_{old})^2 \]

- Learning equation does gradient descent on \(E \):

\[\Delta w = -\alpha \frac{\partial E}{\partial w} \]

- Guaranteed convergence to a local minimum for epoch-wise.

- Global minimum if there exists a differentiable mapping from value functions to weight vectors
The Hall Problem:

\[w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow w_3 \rightarrow w_4 \rightarrow w_5 \]

Residual gradient convergence is very slow:

- Information flows the wrong direction almost as fast

- For 10 states, \(\gamma = 0.9 \), mean squared residual is ill conditioned:
 - Hessian eigenvalues differ by ratio of 2000
 - Hessian is not diagonal, eigenvectors at 45° angles
 - Some algorithms ineffective (Delta-bar-delta, quickprop)

- But the direct method is fast, and does converge!
Direct Method decreases mean squared residual:

\[\Delta W_{rg} \]

\[\Delta W_d \]

Direct method increases mean squared residual:

\[\Delta W_{rg} \]

\[\Delta W_d \]

- Direct method tends to be fast, if it converges
- Residual gradient converges, but may be slow
- Idea: Find a stable weight change close to direct
Residual algorithm: linear combination of both:

$$\Delta w_r = \phi \Delta w_{rg} + (1 - \phi) \Delta w_d$$
Reinforcement Learning Algorithm

<table>
<thead>
<tr>
<th>Counterpart of Bellman Equation (top)</th>
<th>Weight Change for Residual Algorithm (bottom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD(0)</td>
<td></td>
</tr>
<tr>
<td>$V(x) = \langle R + \gamma V(x') \rangle$</td>
<td></td>
</tr>
<tr>
<td>$\Delta w_r = -\alpha \left(R + \gamma V(x') - V(x) \right) \left(\phi \frac{\partial}{\partial w} V(x') - \frac{\partial}{\partial w} V(x) \right)$</td>
<td></td>
</tr>
<tr>
<td>Value Iteration</td>
<td></td>
</tr>
<tr>
<td>$V(x) = \max_u \langle R + \gamma V(x') \rangle$</td>
<td></td>
</tr>
<tr>
<td>$\Delta w_r = -\alpha \left(\max_u \langle R + \gamma V(x') \rangle - V(x) \right) \left(\phi \frac{\partial}{\partial w} \max_u \langle R + \gamma V(x') \rangle - \frac{\partial}{\partial w} V(x) \right)$</td>
<td></td>
</tr>
<tr>
<td>Q-learning</td>
<td></td>
</tr>
<tr>
<td>$Q(x,u) = \langle R + \gamma \max_{u'} Q(x',u') \rangle$</td>
<td></td>
</tr>
<tr>
<td>$\Delta w_r = -\alpha \left(R + \gamma \max_{u'} Q(x',u') - Q(x,u) \right) \left(\phi \gamma \frac{\partial}{\partial w} \max_{u'} Q(x',u') - \frac{\partial}{\partial w} Q(x,u) \right)$</td>
<td></td>
</tr>
<tr>
<td>Advantage Learning</td>
<td></td>
</tr>
<tr>
<td>$A(x,u) = \langle R + \gamma \max_{u'} A(x',u') \rangle \frac{1}{\Delta t} + (1 - \frac{1}{\Delta t}) \max_{u'} A(x,u')$</td>
<td></td>
</tr>
<tr>
<td>$\Delta w_r = -\alpha \left(\left(R + \gamma \max_{u'} A(x',u') \right) \frac{1}{\Delta t} + (1 - \frac{1}{\Delta t}) \max_{u'} A(x,u') - A(x,u) \right)$</td>
<td></td>
</tr>
<tr>
<td>$\cdot \left(\phi \gamma \frac{\partial}{\partial w} \max_{u'} A(x',u') \frac{1}{\Delta t} + \phi(1 - \frac{1}{\Delta t}) \frac{\partial}{\partial w} \max_{u'} A(x,u') - \frac{\partial}{\partial w} A(x,u) \right)$</td>
<td></td>
</tr>
</tbody>
</table>

- Residual algorithms almost identical to direct
- Theoretically should be better
- Mance Harmon found them better in practice
Function Approximation:
Guaranteed Convergence and Convergence Speed

Value Function Approximation Workshop
Machine Learning Conference
July 1995

Leemon Baird
U.S. Air Force Academy
baird@cs.usafa.af.mil
http://kirk.usafa.af.mil/~baird
Function approximation system is linear:

- Value is dot product of weight and state vectors:

 State 1:
 State 2:
 State 3:
 State 4:
 State 5:
 State 6:

- State vectors are linearly independent

- State vectors have same magnitude (1, 2, ∞ norms)
Gradient descent on mean squared error:

- Define mean squared Bellman residual:

\[E = \sum (R + \gamma v_{new} - v_{old})^2 \]

- Learning equation does gradient descent on \(E \):

\[\Delta w = -\alpha \frac{\partial E}{\partial w} \]

- Guaranteed convergence to a local minimum for epoch-wise.

- Global minimum if there exists a differentiable mapping from value functions to weight vectors
The Hall Problem:

Residual gradient convergence is **very** slow:

- Information flows the wrong direction almost as fast

- For 10 states, $\gamma=0.9$, mean squared residual is ill conditioned:
 - Hessian eigenvalues differ by ratio of 2000
 - Hessian is not diagonal, eigenvectors at 45° angles
 - Some algorithms ineffective (Delta-bar-delta, quickprop)
Hand craft state vectors based on known model:

Ensure each weight controls one difference:

- Value is dot product of weight and state vectors:

 State 0: 1 1 1 1 1 1 1
 State 1: 1 1 1 1 1 1 0
 State 2: 1 1 1 1 0 0 0
 State 3: 1 1 1 0 0 0 0
 State 4: 1 1 0 0 0 0 0
 State 5: 1 0 0 0 0 0 0

- For 10 states, eigenvalue ratio decreases from 2000 to 20
Prior knowledge of topology, not order:

\[\begin{align*}
 v_0 &\rightarrow v_1 & &\rightarrow v_2 & &\rightarrow v_3 & &\rightarrow v_4 & &\rightarrow v_5 \\
\end{align*} \]

Slight bias to generalize the wrong direction:

- Value is dot product of weight and state vectors:

 State 0: 1 0 0 0 0 0 0
 State 1: 1 1 0 0 0 0
 State 2: 1 1 1 0 0 0
 State 3: 1 1 1 1 0 0
 State 4: 1 1 1 1 1 0
 State 5: 1 1 1 1 1 1

- For 10 states, eigenvalue ratio increases from 20 to 200
How conditioning changes with number of states

- Longer halls are even worse for 2 systems
- Longer halls are better with all prior info
 -- Still levels out at ratio of 10
 -- Still impractically slow
Summary:

- Direct method can blow up on simple problems

- Impractical to hand craft fast function approximation systems

 - Goal: develop an algorithm that:
 -- Works with any function approximator
 -- Guarantees convergence like residual gradient
 -- Is as fast as the direct method

- Goal theoretically met by Residual algorithms

- Mance Harmon showed it works in practice