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Machine Intelligence Paradigms

There are many unsolved problems that computers could solve if the appropriate software existed. Flight
control systems for new, nonlinear aircraft, automated manufacturing systems, and sophisticated avionics
systems all involve difficult, nonlinear control problems. Many of these problems currently are unsolvable,
not because current computers are too slow or have too little memory, but simply because it is too difficult
to calculate what the program should do. If a computer could learn to solve the problems through trial and
error, that would be of great practical value. Attempts to solve this problem are generally known as artificial
intelligence or machine intelligence.

There have traditionally been two approaches, or paradigms, for creating useful machine intelligence. The
first, the symbolic processing paradigm, assumes that we can tell the computer all the relevant facts in a
situation, using a language of a higher level than Ada or C. The computer is then expected to logically
reason out what it should do, using a large number of if-then type rules. For example, we might tell the
computer all the facts about navigation and threat avoidance, then expect it to logically deduce the best route
for an aircraft to fly. Expert systems are the best example of this approach.

The second approach, the supervised learning paradigm, doesn't assume that we know as much. We need
only know a set of questions with the right answers. For example, we might not know the best way to
program a computer to recognize an infrared picture of a tank, but we do have a large collection of infrared
pictures, and we do know whether each picture contains a tank. The computer is expected to look at all the
examples with answers and learn on its own how to recognize tanks in general. This is usually done by
simulating simple neuron-like equations connected together to form networks, which then learn to recognize
patterns. Standard neural networks are the best example of this approach.

Unfortunately, there are many situations where we don't know enough about the world to build an expert
system, and we don't even know the correct answers that supervised learning requires. For example, in a
flight control system, the question would be the set of all sensor readings at a given time, and the answer
would be how the flight control surfaces should move during the next millisecond. Simple neural networks
can't learn to fly the plane unless there is a set of known answers, so if we don't know how to build a
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controller in the first place, simple supervised learning won't help.

That is why there has been much interest recently in a different approach, the reinforcement learning
paradigm. In this approach, the computer is simply given a goal to achieve. The computer then learns how
to achieve that goal by trial and error. A reinforcement learning program works in real time with continual
feedback from its environment to achieve a given goal. This real-time, closed-loop, goal-seeking behavior
seems to be a crucial aspect of how brains work, and also seems to be important for creating the machine
intelligence we need to solve some difficult problems. Therefore, we and others have been pursuing this
form of machine intelligence and are excited about the possibility to understand large networks that are
reinforcement learning controllers. These may give machine intelligence many of the capabilities that only
humans have now.

Reinforcement Learning Defined

Reinforcement learning is a difficult problem because the controller may perform an action but not be told
whether that action was good or bad. For example, a learning autopilot program might be given control of a
simulator and told not to crash. It will have to make many decisions each second, then after acting on
thousands of decisions, the aircraft might crash. What should the controller learn from this experience?
Which of its many actions were responsible for the crash? It is this problem of assigning responsibility to
individual actions that makes reinforcement learning difficult.

There is a solution to this problem. It is based on a field of mathematics called dynamic programming, and
it involves just two principles. First, if an action causes something bad to happen immediately, such as
crashing the plane, the controller learns not to do that action in that situation again. So whatever the
controller did one millisecond before the crash, it will avoid doing in the future. But that principle doesn't
help for all the earlier actions that didn't lead to immediate disaster.

The second principle is that if all the actions in a certain situation leads to bad results, that situation should
be considered bad. So if the controller has experienced a certain combination of altitude and airspeed many
different times, trying a different action each time, and all actions led to something bad, it will learn that
this situation is bad. This is a powerful principle because it can now learn without crashing. In the future,
any time it chooses an action that leads to this particular situation, it will immediately learn that that action
is bad without having to wait for the crash.

By using these two principles, a reinforcement learning system can actually learn to fly a plane or control a
robot or do any number of tasks. It can first learn on a simulator, then fine-tune on the real thing. All of the
facts that are learned about actions and situations are typically stored using a neural network so
reinforcement learning research profits from all of the accumulated experience of neural network
researchers. Reinforcement learning is not a type of neural network nor is it an alternative to neural
networks. Rather, it is an orthogonal approach that addresses a different, more difficult question, and the
two fields can be combined to yield powerful machine-learning systems.

Advantage Updating

A reinforcement learning algorithm that we have developed, called advantage updating (Air Force patent
pending, Baird 1994), is a particular type of reinforcement learning that is specifically designed for
problems with real-time control and many actions per second. It can be applied to both optimization
problems, such as autopilots, and game problems, such as dogfights. In game theory, a game is a problem
where there are two players, and each must make decisions based on the behavior of the opponent. For
example, if an anti-aircraft missile is targeted at an aircraft, the best strategy for the aircraft depends on the
behavior of the missile, and the best strategy for the missile depends on the behavior of the aircraft. It is
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usually extremely difficult to calculate the optimal strategies for both players in a game problem, but
advantage updating can be used to learn those optimal strategies. An advantage updating system can
simulate multiple games with a missile and plane starting in various configurations, and can then learn the
optimal actions for both the plane and the missile. After it has learned, the program can be installed in a
missile, and it will play perfectly against any plane, or it can be installed in a plane, and it will play
perfectly against any missile. If both the missile and the plane are controlled by the learning system, both
will play well, and neither will be able to improve its performance by using any other strategy. If there is an
optimal strategy, the advantage updating algorithm will always learn it, given sufficient time and memory.

We tested this algorithm by allowing it to solve a problem where a fast missile is targeted at a slower plane.
The program was told only that the missile should try to hit the plane and that the plane should try to avoid
the missile. This information was conveyed by using a scalar reinforcement signal that indicated how well
each player was accomplishing its goal. In this case the reinforcement signal was the distance between the
two players. The goal of the missile was to minimize the distance, while the goal of the plane was to
maximize that same distance. The program was not told how missiles and planes work and was not given
any hints about which strategies to use, so it was forced to learn all of the strategies on its own. For this
particular problem, we also were able to calculate the best strategy for the missile and for the plane and so
were able to compare what the program learned to the best possible answer. It was found that the advantage
updating system, through learning, converged to optimal answers. Figure 1 shows the results of pitting a
missile against a plane when both are following the policy that the computer learned. (In the figure, each
successive diagram displays a larger geographical area, so the triangles appear smaller.) If either player
were to deviate from the policy, its performance would be worse. Each of the figures show the same players
and strategies but with different initial positions and velocities.
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Figure 1: Progression From Initial State to Missile Impact.

The advantage updating system learned that, in some cases, it is better for a plane to turn toward the missile,
decreasing the distance in the short term, to increase the distance between the two in the long term (Figure
2), a tactic sometimes used by pilots. Included in Figure 2 is a graph of distance vs. time showing the effects
of the plane's learned decisions. The system also learned that a missile should sometimes lead the plane,
aiming at a point in front of the plane rather than simply homing in on a heat source or radar signature
(Figure 3). This demonstrates that a single advantage learning system can solve a game problem, finding the
optimal actions for both players, even when it is given no initial information and must learn everything on
its own. These results were presented at the Neural Information Processing Systems Conference in
December 1994.
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Figure 3: Missile Aims At A Point In Front Of The Plane.

Transitioning the Technology

We have worked in-house on the theoretical underpinnings of intelligent, reinforcement-learning controllers.
Our work in reinforcement learning has been supported by the Air Force Office of Scientific Research, and
we have also initiated external application contracts supported by Wright Laboratory. The application
potential appears to be substantial for this new form of machine intelligence, so applications are currently

http://www.stsc.hill.af.mil /crosstalk/1996/02 /reinforc.asp Page 4 of 6



Reinforcement Learning: An Alternative Approach to Machine Intelligence - February 1996 9/7/08 2:55 PM

being investigated for navigation, sensor resource management, and automatic target recognition, tracking,
and pursuit.

A small business innovation research (SBIR) contract has been completed to apply advantage updating to a
computer vision system. The reinforcement learning system decides how to move a motorized camera so
that objects in a scene can be recognized quickly. In addition, a $1 million exploratory development
contractual program has begun to apply reinforcement learning systems to avionics problems.

The field of reinforcement learning appears to have great potential for creating software and hardware that
learns on its own to solve difficult problems. In the next few years, both the theory and the applications may
grow exponentially, with significant impact on both the Air Force and industry.
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