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Abstract

A new algorithm, advantage learning, is presented that improves on advantage
updaing by requiring that a single function be leaned rather than two.
Furthermore, advantage leaning requires only a single type of update, the leaning
update, while advantage updating requires two dff erent types of updates, aleaning
update and a normilization updte. The reinforcement leaning system uses the
residual form of advantage leaning. An application d reinforcement leaningto a
Markov game is presented. The test-bed has continuows dates and norinea
dynamics. The game onsists of two players, a missle and a plane; the missle
pursues the plane and the plane evades the missle. On ead time step, ead player
choaoses one of two passble adions; turn left or turn right, resulting in a 90 degree
instantaneous change in the arcraft’s heading. Reinforcement is given orly when
the misgl e hits the plane or the plane reates an escgpe distance from the missle.
The alvantage function is gored in a single-hidden-layer sigmoidal network.
Spedal of leaningisincreased by a new algorithm, Incremental Delta-Delta (IDD),
which extends Jambs (1988 Delta-Delta for use in incremental training, and
differs from Sutton's Incremental Delta-Bar-Delta (1992 in that it does not require
the use of a trace ad is amenable for use with genera function approximation
systems. The advantage leaning algorithm for optimal control is modified for
games in arder to find the minimax paint, rather than the maximum. Empiricd
results gathered using the missle/aircraft test-bed validate theory that suggests
residual forms of reinforcement leaning algorithms converge to a locd minimum
of the mean squared Bellman residual when using genera function approximation
systems. Also, to ou knowledge, thisisthe first time an approximate second ader
method res been used with residual algorithms. Empirica results are presented
comparing convergence rates with and withou the use of IDD for the reinforcement
leaning test-bed described above and for a supervised leaning test-bed. The
results of these experiments demonstrate IDD increased the rate of convergence and
resulted in an order of magnitude lower total asymptotic eror than when using
backpropagation alone.



1INTRODUCTION

In Harmon, Baird, and Klopf (1999 it was demonstrated that the residual gradient form of the
advantage updating algorithm could lean the optimal pdlicy for a linea-quadratic differential
game using a quadratic function approximation system. We propose a simpler algorithm,
advantage learning, which retains the properties of advantage updating bu requires only one
function to be leaned rather than two. A faster class of agorithms, resdual agorithms, is
propased in (Baird, 95). We present empiricd results demonstrating the residual form of
advantage leaning solving a noninea game using a general neura network. The game is a
Markov dedsion pocess (MDP) with continuows gates and norinea dynamics. The game
consists of two players, a missle and a plane; the missle pursues the plane and the plane evades
the missle. On ead time step ead player choases one of two passhle adions; turn left or turn
right, which results in a 90 degree instantaneous change in healing for the arcraft.
Reinforcement is given orly when the missle ather hits or misses the plane. The alvantage
functionis dored in a single-hidden-layer sigmoidal network. Rate of convergenceis increased
by anew algorithm we cdl Incremental Delta-Delta (IDD), which extends Jacmbs (1988 Delta
Delta for use in incremental training, as oppcsed to epoch-wise training. IDD differs from
Sutton's Incremental Delta-Bar-Delta (1992 in that it does nat require the use of a trace
averages of recent values, and is useful for general function approximation systems. The
advantage learning algorithm for optimal control is modified for games in order to find the
minimax paint, rather than the maximum. Empiricd results gathered using the missle/aircraft
test-bed validate theory that suggests residual forms of reinforcement leaning algorithms
converge to alocd minimum of the mean squared Bellman residual when using general function
approximation systems. Also, to ou knowledge, this is the first time an approximate seaond
order method res been used with residua algorithms, and we present empiricd results
comparing convergence rates with and withou the use of 1DD for the reinforcement leaning
test-bed described above and for a supervised-learning test-bed.

In Sedion 2 we present advantage leaning and describe its improvements over advantage
updating. In Sedion 3 we review dired agorithms, residual gradient algorithms, and residual
algorithms. In Sedion 4 we present a brief discusson d game theory and review reseach in
which game theory has been applied to MDP-like environments. In Sedion 5 we present
Incremental Delta-Delta (IDD), an incremental, norinea extension to Jambs (1989 Delta-
Delta dgorithm. Also presented in Sedion 5are empiricd results generated from an applicaion
of the IDD agorithm to a norinea supervised leaning task. Sedion 6 explicitly describes the
reinforcement learning testbed and presents the update equations for residual advantage leaning.
Simulation results generated using the missle/aircraft test-bed are presented and dscussed in
Sedion 7. These results include diagrams of leaned behavior, a comparison d the system’'s
ability to reduce the mean squared Bellman error for different values of @ (including an adaptive
@), and a comparison of the systamperformance with and without the use of IDD.

2 BACKGROUND

2.1 Advantage Updating

The adlvantage updating algorithm (Baird, 1993 is a reinforcement leaning algorithm in which
two types of information are stored. For ead state X, the value V(X) is dored, representing an
estimate of the total discourted return expeded when starting in state x and performing ogimal



adions. For ead state x and adion u, the advantage, A(x,u), is gored, representing an estimate
of the degreeto which the expeded total discourted reinforcement is increased by performing

adion u rather than the adion currently considered best. The optimal value function V" (X)
represents the true value of ead state. The optimal advantage function A* (x,u) will be zeo if u

is the optimal adtion (becaise u corfers no advantage relative to itself) and A" (x,u) will be
negative for any subogimal u (becaise asubogimal adion hes a negative alvantage relative to
the best adion). Advantage updating hes been shown to lean faster than Q-leaning (Watkins,
1989), especially for continuous-time problems (Baird, 1993, Harmon, Baird, & Klopf, 1995).

2.2 Advantage L earning

Advantage leaning improves on advantage updating by requiring orly a single function to be
stored, the advantage function A(x,u). Furthermore, advantage updating requires two types of
updates (leaning and namalizing updies), while alvantage leaning requires only asingle type
of update (the leaning updite). For eat state-adion pair (x,u), the advantage A(x,u) is gored,
representing the utility (advantage) of performing adion u rather than the adion currently
considered best. The optimal advantage function A*(x,u) represents the true alvantage of ead
state-action pair. The value of a state is defined as:

V' (x) = muaxA*(x, u) (1)

The advantag@*(x,u) for statex and actioru is defined to be:

IR+y*V (X )} -V (x

\RTYEV (X)) -V (%) o
AtK

where y* is the discourt fador per time step, K is a time unit scding fador, and <> represents
the expeded value over al possble results of performing adion u in state x to receve immediate
reinforcement R and to trangition to a new state xX'. Under this definition, an advantage can be
though of as the sum of the value of the state plus the expeded rate & which performing u
increases the total discourted reinforcement. For optima adions the secwond term is zero,
meaning the value of the adion is aso the value of the state; for subogimal adions the seand
term is negative, representing the degresubbptimality relative to the optimal action.

A (x,u)=V (x)+

3 REINFORCEMENT LEARNING WITH CONTINUOUS STATES

3.1 Direct Algorithms

For predicting the outcome of a Markov chain (a degenerate MDP for which there is only one
paosshle adion), an obvious agorithm is an incremental form of value iteration, which is defined
as:

V(x) « @-a)V(x) +a[R+ W (x)] (3)

If V() is represented by a function-approximation system other than a look-up table, update (3)
can be implemented dredly by combining it with the badpropagation algorithm (Rumelhart,
Hinton, & Willi ams, 86). For aninpu x, the acual output of the function-approximation system
would be V(x), the “desired ouput” used for training would be R+yW(X), and all of the weights
would be ajusted through gadient descent to make the adual output closer to the desired



output. Equation (3) is exadly the TD(0) algorithm, and could aso be cdled the direa
implementation of incremental value iterati@t|earning, and advantage learning.

3.2 Residual Gradient Algorithms

Reinforcement leaning agorithms can be guaranteed to converge for lookup tables, yet be
unstable for function-approximation systems that have even a small amourt of generalizaion
when using the dired implementation (Boyan, 95). To find an algorithm that is more stable than
the direa algorithm, it is useful to spedfy the exad goal for the leaning system. For the
problem of prediction ona deterministic Markov chain, the goal can be stated as finding a value
function such that, for any state x and its succesor state X', with a transition yielding immediate
reinforcemenR, the value function will satisfy the Bellman equation:

V(x) ={R+ V(X)) ()

For a given value function V, and a given state x, the Bellman residud is defined to be the
diff erence between the two sides of the Bellman equation. The mean squared Bellman residud
for an MDP withn states is therefore defined to be:

£ =5 [Rewoe ) - V] 5)

Residual gradient algorithms change the weights in the function-approximation system by
performing gadient descent on the mean squared Bellman residual, E.  This is cdled the
residual gradienalgorithm.

The counterpart of the Bellman equation for advantage Iearning is:

AU =(Re VA, (¢,0) o + (- 20 TR ©
If A(x,u)is an approximation o&*(x,u), then the mean squared Bellman residEals:
N LV \_1
E—\QR+y Aw(x u)/AtK % AtKEAW(X U) = A(X, u) / (7)

where the inner <> isthe expeded value over all possble results of performing a given adionu
in a given state, and the outer <> is the expected value over all possible states and actions.

3.3 Residual Algorithms

Direa algorithms can be fast but unstable, and residual gradient algorithms may be stable but
dow. Dired agorithms attempt to make eab state like its succesor, but ignare the dfeds of
generdizaion duing leaning. Resdua gradient algorithms take into acourt the dfeds of
generdizaion, but attempt to make eab state match bah its siccesor and its predecessors. A
weighted average of adired algorithm with aresidual gradient algorithm could have guaranteed
convergence if the weighting fador ¢ is were dhosen corredly. Such an algorithm would cause
the mean squared Bellman residual to deaease monaonicdly, but would na necessarily foll ow
the negative gradient, which would be the path of stegest descent. Therefore, it would be
reasonable to refer to such algorithmsessdualalgorithms (Baird, 1995).

There isthe question d how to choase @ appropriately. One gproadi isto tred it as a constant,
like the leaning rate constant. Just as a leaning rate mnstant can be dhosen to be & high as



posshle withou causing the weights to blow up, so @ can be thosen as close to 0 as possble
withou the weights blowing up A ¢ of 1 is guaranteed to converge, and a ¢ of 0 might be
expeded to lean quckly if it is dable & al. However, this may na be the best approadh. It
requires an additional parameter to be dhosen by trial and error, and it ignares the fad that the
best @ to use initialy might not be the best @ to use later, after the system has leaned for some
time. Fortunately, it is easy to cdculate the @ that ensures a deaeasing mean squared residual,
whil e bringing the weight change vedor as close to the dired algorithm as possble (described in
Section 6).

4 MULTI-PLAYER GAMES

The theory of Markov dedsion processes (Barto et al., 1989 Howard 196Q is the basis for most
of the recent reinforcement leaning theory. However, this body d theory assumes that the
leaning system’s environment is dationary and, therefore, contains no aher adaptive systems.
Game theory (von Neumann and Morgenstern, 1947) is explicitly designed for reasoning abou
multi-player environments.

Differential games (Isaac, 1969 are games played in continuots time, or use sufficiently small
time steps to approximate ntinuows time. Both payers evaluate the given state and
simultaneously exeaute an adion, with no knavledge of the other player's sleded adion. The
value of a game is the longterm, discourted reinforcement if both opporents play the game
optimally in every state. Consider a game in which payer A tries to minimize the total
discounted reinforcement, whil e the opporent, player B, tries to maximize the total discourted
reinforcement. Given the alvantage A(X,uA,u) for ead passble adionin state x, it is useful to

define the minimax and maximin values for stabs:

minimax(x) = nain n]axA(x, uA,uB) (8)
maximin(x) = muaxnain A(x, uA,uB) (9)

If the minimax equals the maximin, then the minimax is cdled a saddepaoint and the optimal
palicy for both payersisto perform the adions assciated with the saddepaoint. If a saddepoint
does nat exist, then the optimal pdlicy is gochastic if an opimal policy exists at al. If a
saddepoint does nat exist, and a leaning system treds the minimax asif it were asaddepaint,
then the system will behave & if player A must chocse an adion onead time step, and then
player B choases an adion based uponthe adion chosen by A. For the dgorithms described
below, asaddepaint isasaumed to exist. If a saddiepoint does naot exist, this assumption confers
a slight advantage to player B.

5INCREMENTAL DELTA-DELTA (IDD) FOR NONLINEAR FUNCTION
APPROXIMATORS

5.11DD Derivation

Incremental Delta-Bar-Delta (IDBD) was propcosed by Sutton (1992 as an extension to the
Delta-Bar-Delta dgorithm (Jacobs, 1988 that makes the dgorithm amenable to incremental
tasks (leaning tasks in which examples are processed ore by ore and then discaded). The
IDBD algorithm was described by Sutton as a meta-learning algorithm in the sense that it leans
the leaning-rate parameters of an underlying base leaning system. In Sutton (1992, the base



leaning system was the Leat-Mean-Square (LMS) rule, also knowvn as the Widrow-Hoff rule
(Widrow and Steans, 1985, and the IDBD algorithm was derived for linea function
approximation systems. Here, we present an extension to Jacobs (1988 Delta-Delta dgorithm
that is appropriate for incremental training when using norinea function approximation
systems.

Asin the IDBD algorithm, in IDD eadt parameter of the the neural network has an asociated
learning rate of the form

a (t) =0 (10)

(wherei indicaes the parameter of association) that is updated after ead step of leaning. There
are two advantages resulting from the exporentia relationship of the leaning rate, o, and the
memory parameter that is adually modified, 3. First, this assures that o, will aways be positive.
Seowond, it allows geometric steps in a,. As 3, is incremented or deaemented by a fixed step-
size then a, will move up a down byafradion d its current value, alowing a, to become very

small. IDD updatef, by
B+ = () +0= Lt ) 1)

where Aw, is a dange in the weight parameter w, and 0 is the meta-leaning rate. The
derivation of IDD is similar in principle to that of IDBD and is presented below. We start with

o 0HE(t+)
Bi(t+1) =B (1) QW (12)

where (Ez) is the expeded value of the mean squared error. Applying the dchain rule we may
write

IHE (1+D)  IHE (t+1) dw, (t +) 9, (1)

dB, (1) ow,(t+1)  da(t) 9B (1)

By evauating the last term of equation (13), shown in equation (14), and then substituting the
results we arrive at equation (15).

(13)

_5ai(t)—5ip‘_ B —
O (14)
OHE (t+1) _ 93(E*(t+ ) dwy (1 +1
B  ow(t+l)  da,(t) a; () (15)

By evaluating the next to last term of equation (15) and rearanging, we find the equality
described by equation (16).

e+ o O a{ENt+ )T
a® aamp O O T wme g



aw(t+)  IHEX(t+D)

gat)  ow()

Again, substituting the results of equation (16) into (15) produces

IHE (t+1))  93(E’(t+D) 3{E’ (t+1)) o (0 an

9B, (1) ow, (t +1) ow, (t)

Next, we define the change in the paramet@nd rearrange for substitution.

04{E?(t +1))

ow; (t)
Aw, () _ 03(E*(t+1)
a; () ow, (1)

By substituting the left-hand side of the second helf of equation (18) into equation (17), and then
deriving the equivalent of equation (18) for Aw, (t +1) and substituting into equation (17), we
arrive at

(16)

Aw; (1) = —a; ()
(18)

IYE’(t+1) _ Aw,(t+1)
Bty  a@)

Aw; (t) (19)

Thus

+1
B+ =0 +67 D o 20)
The right-hand side of equation (19) provides a true unbiased estimate of the gradient of the
error surfacewith resped to the memory parameter, 3. An equivaent of IDBD for nonlinea
systems can trivially be derived from IDD by repladng Aw, (t) with Awi(t), where Awi(t)isan
exporentially weighted sum of the aurrent and pest changes to w. The traceis defined by
equation (21).

AWi(t) = (1- £)Aw, (t—1) + eAwi(t —1) (21)

Thisform of IDBD for nonlinea systems includes ancther freeparameter, €, that determines the
decay rate of thetrace If it were possbleto choose € perfedly for ead training example, IDBD
would, in the worst case, be equivalent to IDD, and would onaverage provide abetter estimate
of the gradient. However, the optima value of € is a function d the rate of change in the
gradient of the eror surface and is therefore different for different regions of state space
Moreover, Jambs original motivations for using delta-bar-delta rather than delta-delta ae no
longer relevant when ead leaning rate is defined acerding to equation (10). For these reasons
we used IDD to speed the convergence rate fotestined.



5.21DD Supervised L earning Results

The caabiliti es of IDD were initially assessed using a supervised-leaning task. The intent of
this experiment was to answer the question: Does the IDD algorithm perform better than the
ordinary badkpropogation algorithm? The task involved six red-valued inpus (including a bias)
and ore output. The inpus were diosen independently and randamly in the range [-1, 1]. The
objedive function was the square of the first inpu summed with the secondinpu. The function
approximator was a single-hidden-layer sigmoidal network with 5 Hdden nodes. For ead
algorithm, we trained the network for 50,000 iterations and then measured the asymptotic aror.
This process was repeaed 100 times using

different initial random number seals, and the a

results were averaged. The eperiment was 1 f———— 1
repeded for different values of a in the range
[0.35, 0.9]. The equivalent was dore for the , W
IDD agorithm. The experiment was repeaed Error

for values of the meta-leaning rate 0 in the
range [0.1, 1.0] in increments of 0.1. The
results are presented in Figure 1, and show that Asymptotic
the IDD agorithm finds a distribution o """
leaning rates that is better than any singe

0.1 1 T01

01 02 03 04 05 06 07 08 09 1.0

Figure 1: Comparison of IDD and _ © . th
the backpropogation algorithms leaning rate shared by all weights. The IDD algorithm

consistently reduced the eror by an order of magnitude
more tharbackprop alone.

6 SSMULATION OF THE GAME

6.1 RESIDUAL ADVANTAGE LEARNING

During training, a state is chosen from a uniform randam distribution onead leaning cycle.
The vedor of weights in the function approximation system, W, is updated acwrding to
equation (22) on each learning cycle.
1 10 Il
AW:—G§R+ YA mea(X W) J— +§—_ a6 U) —AX U
P A X D) ¥ S (6 U =AU -

o .0 1 100 17} 0
. A A X - 4+ _ ) _
|jW dN Amn max( ’ U) AtK AtKDM Amn max(X1u) dN A(X1 u)|:|

The parameter @ is a @nstant that controls a trade-off between pue gradient descent (when @
equals 1) and a fast dired algorithm (when @ equals 0). A @ that ensures a deaeasing mean
squared residual, while bringing the weight change vedor as close to the dired algorithm as
posshle can be cdculated by maintaining an estimate of the gpoch-wise weight change vedors.
These can be gproximated by maintaining two scdar values, w, and w, associated with ead
weight w in the function approximation system. These ae traces, averages of recent values,
used to approxima®W, andAW . The traces are updated on each learning cycle according to:
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where pu isasmall, positive mnstant that governs how fast the system forgets. On ead time step
astable @ is cdculated by wsing equation (25). This ensures convergence while maintaining fast

learning:
Z WdWrg

Z (Wa = Wrg)Wig

w

p= +u (25)

It isimportant to nde that this algorithm does nat foll ow the negative gradient, which would be
the stegpest path of descent. However, the dgorithm does cause the mean squared residual to
deaease monaonicdly (for appropriate ¢), thereby guaranteeng conwvergence to a locd
minimum of the mean squared Bellman residual.

6.2 GAME DEFINITION

Our system is a differential game with a misgle pursuing a plane, asin Rgjan, Prasad, and Rao
(2980 and Millington (1991). The adion performed by the misdle is a function d the state.
The adion performed by the plane is a function d the state and the adion d the missle. The
use of the minimax for determination d palicy guarantees a solution to the game by ensuring a
deterministic system.

The game is Markov with continuows gates and norinea dynamics. The state x is a vedor
(XmXp) composed of two elements: the state of the missle, xm, and the state of the plane, Xp,
eat o which are vedors composed o four elements containing the scdar values of the x and y
coordinates and x and y \elocities of the players in two-dimensional space The adionu is a
vedor (Um,uUp) composed of two scdar elements. The dement um represents the adion
performed by the missle, and the dement up represents the adion performed by the plane; an
adion value of 0.5 indicates an instantaneous 90-degree diange of healing to the left of the
current heading, and an adion value of -0.5 indicaes an instantaneous 90-degree tange of
healing to the right of the aurrent heading. The next state x ., is a noninea function d the

current state X and adion u,_ The speed of ead player is fixed, with the speed of the missle

twicethat of the plane. Therefore, the Euclidean dstance measure of the dhange in pasition for
one dtate trangition is a fixed scaar value for ead player, with the value for the missle being
twice that of the value for the plane. On ead time step the heading o ead payer is upceted
acording to the adion chosen, the velocity in bah the x and y dmensions is computed for ead



player, and the positions of the players are updated. Pseudocode describing these dynamics
follows:

degZ2rad - converts degrees to radians; // trigonometric functions measured in radians
Plane_action - actions chosen by plane;

Plane_theta - current heading of plane in 2d space;

Missile_velocity X - component vector velocity of missile in x dimension;
Missile_velocity Y - component vector velocity of missile in y dimension;

1) If (Plane_action = 0.5) thdPlane_theta Plane_theta + 90 * deg2rad;
elsePlane_theta Plane_theta - 90 * deg2rad;

2) Repeat step 1 for Missile.

3) NormalizePlane_theta anmllissile_theta.

4) Missile_velocity X =Missile_speed tosMissile_theta);

5) Missile_velocity Y =Missile_speed * silissile_theta);

6) Repeat steps 4 & 5 for Plane;

The reinforcement function Risafunction d the distance between the players. A reinforcement
of 1 is given when the Euclidean distance between the players is greaer than 2 urits (plane
escagpes). A reinforcement of -1 is given when the distance is lessthan 0.25 unts (missle hits
plane). No reinforcement is given when the distanceis in the range [0.25,2]. The missle seeks
to minimize reinforcement, while the plane seeks to maximize reinforcement.

The advantage function is approximated by a single-hidden-layer neural network with 50 hdden
nodes. The hidden-layer nodes eat have asigmoidal adivation function, the output of which
liesin therange [-1,1]. The output of the network is a linea combination d the outputs of the
hidden-layer nodes with their associated weights. To speel the rate of convergence we used
IDD asdescribed in Sedion 5 There ae 6 inpusto the network. Thefirst 4 inputs describe the
state and are normalized to the range [-1,1]. They consist of the differences in pasitions and
velocities of the players in bah the x and y dmensions. The remaining inpus describe the
action to be taken by each player; 0.5 and -0.5 indicate left and rightrespsctively.

7RESULTS

Experiments were formulated to accomplish three objedives. The first objedive was to
determine heurigticaly to what degree residual advantage leaning could lean a reasonable
palicy for the misgle/aircraft system. In Harmon, Baird, and Klopf (1999 it was passble to
cdculate the optimal weights for the quadratic function approximator used to represent the
advantage function. Thisis not the cae for the arrent system. The nonlinea dynamics of this
system require more representational cgpadty than a smple quadratic network to store the
advantage function. In using a single hidden-layer sigmoidal network we gain the
representational cgpadty nealed bu lose the aility to cdculate the optimal parameters for the
network, which would have been useful as a metric. For this reason, our metric is reduced to
simple observation d the system behavior, and is analogows to the metric used to evauate
Tesauro’'s TD-Gammon (Tesauro, 1990. Also, it is possble this game might be made less
difficult to solve if expresed in an appropriate wordinate system, such as plane and missle
centered pdar coordinates. However, the motivation for this experiment is to demonstrate the



ability of residual algorithmsto solve difficult, norlinea control problems using a genera neural
network. For this reason, the game was explicitly structured to be difficult to solve.

The second oljedive was to analyze the performance of three different forms of advantage
leaning: the residual gradient form, the dired form, and a weighted average of the two (values
of @intherange [0, 1]). Thethird andfinal objedive was to evaluate the utility of DD for this
test-bed, and to addressthe following question. When using residual algorithms, which method
increases the rate of convergence the most: 1) Using the residual gradient form of the dgorithm
with a seoond ader method @, 2) Using the residual form of the dgorithm with an adaptive ¢
or,

3) Some combination of the two?

Addressng the first objedive, the reinforcement learning system implementing the residual form
of advantage leaning produced a reasonable palicy after 800,000 training cycles. The missle
leaned to pusue the plane, and the plane leaned to evade the missle. Interesting behavior was
exhibited by bdh payers under certain initial condtions. Firgt, the plane leaned that in some
cases it is able to evade indefinitely the missle by continuowsly flying in circles within the
missl e s turn radius. Secnd, the missle leaned to anticipate the position d the plane. Rather
than heading dredly toward the plane, the missle leaned to leal the plane under appropriate
circumstances.

@) (b)

Figure 2 (a) Demonstration of missile leading plane after learning and (b) ultimately hitting the plane.
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Figure 2 (a) Demonstration of the ability of the plane to survive indefinitely by flying in continuous circles within the
missile’s turn radius. (b) Demonstration of the learned behavior of the plane to turn toward the missile to increase the
distance between the two in the long term.

In Experiment 2, the dfeds of different values of ¢, the weighting fador used in the linea
combination d the residual gradient update vedor and the dired method updite vedor, and the
use of IDD onthe leaning system’s convergence rate were wmpared. For At values of 1.0 and
0.1, twelve diff erent runs were acomplished, ead using identica parameters with the exception

1C



of the weighting fador @ and the use or nontuse of IDD. Figure 3 presents the results of these
experiments. A @ of 1 yields advantage leaning in the residual gradient form, while a@ of 0
yields advantage learning implemented in the direct form.

10

Figure 3: ¢ comparison

Asymptotic
Error

A @of 1, which yields the residual gradient

—wsesa@lgorithm, minimized the mean squared Bellman
was residual more than the other valuespaést,

including the adaptive. The use of IDD did

result in a lower total error in all comparisons.

Furthermore, the use of IDD was imperative for
s ‘ ‘ ‘ ‘ ! finding a control policy that generated

e T T reasonable trajectories for the aircraft. The use
0 of IDD not only increased the rate of

convergence, but resulted in a smaller asymptotic error level. When training with a value of O
for the parametap, reducing the algorithm to the direct method of advantage learning, the

weights grew without bound when using a time duratianef 0.1.

Residual algorithms increase the speed of convergence by following the gradient of the direct
method as close as possible, while still guaranteeing convergence to a local minimum by
ensuring the weight change vectorenotonically reduce the mean squared Batllmesidual

error. By combining residual algorithms with IDD, we have two separate mechanisms pursuing
the same goal: a fast rate of convergence. How these mechanisms interact, complement, or
inhibit one another is not fully understood. It was necessary to put a ceiling of -4 on the growth
of B to ensure system stability. One might think that by simply decreasimgetizelearning rate

8, one would not need to add heuristically a ceiling to the parafefEhis turned out not to be

the case. Even for a very sm@lithere did exis that grew to the point of causing the system

to be unstable (the weights grew to infinity).

Further reseacch is nealed to determine if, in general, using ssaond-order methods with residual
gradient algorithms is desirable over using residual algorithms with an adaptive @. Althoughthis
was the cae for the experiments described abowve, the following results were dso generated
using the missle/aircraft test-bed using dightly different parameter settings (e.g., k, At, ).
Theseresultsreflectthe use of IDD.

25

Mean 20 /, —O— fixed @
Squared 15 /- adaptive 0 Figure4: The use of an adaptiyereduced the mean
Bellman 10 / p ‘qBr
Bror 5 e squared Bellman residual further than any of the
0 T T T 1 q y
1 0.75 05 025 0 tested fixedp's.

?

For this st of experiments the Bellman error was minimized the most by combining the use of
an adaptive @ with the use of IDD. The resultant control palicy from these experiments also
produced aircraft trgjedories that looked reasonable. It isthe cae that using IDD resulted in a
lower mean squared Bellman error for all values of @, including the aaptive @. Why thisisthe
case and how these mechanisms interact will be explored in future research.

11



8 CONCLUSIONS

The results gathered using the missle/aircraft test-bed provide evidence that residual forms of
reinforcement leaning agorithms produce reinforcement leaning systems that are stable and
converge to alocd minimum of the mean squared Bellman residual when using genera function
approximation systems. In general, nonlinea problems of this type ae difficult to solve with
classcd game theory and control theory, and therefore gpea to be good applicaions for
reinforcement learning.

The data dso suggests that the use of second-order methods may be desirable or even necessary,
as was the cae for this test-bed, to generate the desired control padicy. Althoughmuch reseach
has been acammplished investigating approacdhes for speeding rates of convergence, the results
gathered from applying these methods in supervised leaning tasks may nat necessarily had true
for reinforcement leaning tasks. This gems from fundamental differences in the nature of
supervised and reinforcement leaning. For this reason, we fed that a rigorous comparison o
these methods implemented in a reinforcement leaning system is an appropriate topic for future
research.
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