
Multi-Player Residual Advantage Learning With General
Function Approximation

Mance E. Harmon
Wright Laboratory

WL/AACF
2241 Avionics Circle

Wright-Patterson Air Force Base,
OH 45433-7308

harmonme@aa.wpafb.mil

Leemon C. Baird III
U.S.A.F. Academy

2354 Fairchild Dr. Suite 6K41
 USAFA, CO 80840-6234

baird@cs.usafa.af.mil

Abstract

A new algorithm, advantage learning, is presented that improves on advantage
updating by requiring that a single function be learned rather than two.
Furthermore, advantage learning requires only a single type of update, the learning
update, while advantage updating requires two different types of updates, a learning
update and a normilization update. The reinforcement learning system uses the
residual form of advantage learning. An application of reinforcement learning to a
Markov game is presented. The test-bed has continuous states and nonlinear
dynamics. The game consists of two players, a missile and a plane; the missile
pursues the plane and the plane evades the missile. On each time step, each player
chooses one of two possible actions; turn left or turn right, resulting in a 90 degree
instantaneous change in the aircraft’ s heading. Reinforcement is given only when
the missile hits the plane or the plane reaches an escape distance from the missile.
The advantage function is stored in a single-hidden-layer sigmoidal network.
Speed of learning is increased by a new algorithm, Incremental Delta-Delta (IDD),
which extends Jacobs’ (1988) Delta-Delta for use in incremental training, and
differs from Sutton’s Incremental Delta-Bar-Delta (1992) in that it does not require
the use of a trace and is amenable for use with general function approximation
systems. The advantage learning algorithm for optimal control is modified for
games in order to find the minimax point, rather than the maximum. Empirical
results gathered using the missile/aircraft test-bed validate theory that suggests
residual forms of reinforcement learning algorithms converge to a local minimum
of the mean squared Bellman residual when using general function approximation
systems. Also, to our knowledge, this is the first time an approximate second order
method has been used with residual algorithms. Empirical results are presented
comparing convergence rates with and without the use of IDD for the reinforcement
learning test-bed described above and for a supervised learning test-bed. The
results of these experiments demonstrate IDD increased the rate of convergence and
resulted in an order of magnitude lower total asymptotic error than when using
backpropagation alone.

1

1 INTRODUCTION

In Harmon, Baird, and Klopf (1995) it was demonstrated that the residual gradient form of the
advantage updating algorithm could learn the optimal policy for a linear-quadratic differential
game using a quadratic function approximation system. We propose a simpler algorithm,
advantage learning, which retains the properties of advantage updating but requires only one
function to be learned rather than two. A faster class of algorithms, residual algorithms, is
proposed in (Baird, 95). We present empirical results demonstrating the residual form of
advantage learning solving a nonlinear game using a general neural network. The game is a
Markov decision process (MDP) with continuous states and nonlinear dynamics. The game
consists of two players, a missile and a plane; the missile pursues the plane and the plane evades
the missile. On each time step each player chooses one of two possible actions; turn left or turn
right, which results in a 90 degree instantaneous change in heading for the aircraft.
Reinforcement is given only when the missile either hits or misses the plane. The advantage
function is stored in a single-hidden-layer sigmoidal network. Rate of convergence is increased
by a new algorithm we call Incremental Delta-Delta (IDD), which extends Jacobs’ (1988) Delta-
Delta for use in incremental training, as opposed to epoch-wise training. IDD differs from
Sutton’s Incremental Delta-Bar-Delta (1992) in that it does not require the use of a trace,
averages of recent values, and is useful for general function approximation systems. The
advantage learning algorithm for optimal control is modified for games in order to find the
minimax point, rather than the maximum. Empirical results gathered using the missile/aircraft
test-bed validate theory that suggests residual forms of reinforcement learning algorithms
converge to a local minimum of the mean squared Bellman residual when using general function
approximation systems. Also, to our knowledge, this is the first time an approximate second
order method has been used with residual algorithms, and we present empirical results
comparing convergence rates with and without the use of IDD for the reinforcement learning
test-bed described above and for a supervised-learning test-bed.

In Section 2 we present advantage learning and describe its improvements over advantage
updating. In Section 3 we review direct algorithms, residual gradient algorithms, and residual
algorithms. In Section 4 we present a brief discussion of game theory and review research in
which game theory has been applied to MDP-like environments. In Section 5 we present
Incremental Delta-Delta (IDD), an incremental, nonlinear extension to Jacobs’ (1988) Delta-
Delta algorithm. Also presented in Section 5 are empirical results generated from an application
of the IDD algorithm to a nonlinear supervised learning task. Section 6 explicitl y describes the
reinforcement learning testbed and presents the update equations for residual advantage learning.
Simulation results generated using the missile/aircraft test-bed are presented and discussed in
Section 7. These results include diagrams of learned behavior, a comparison of the system’s
abilit y to reduce the mean squared Bellman error for different values of φ (including an adaptive
φ), and a comparison of the system’s performance with and without the use of IDD.

2 BACKGROUND

2.1 Advantage Updating

The advantage updating algorithm (Baird, 1993) is a reinforcement learning algorithm in which
two types of information are stored. For each state x, the value V(x) is stored, representing an
estimate of the total discounted return expected when starting in state x and performing optimal

2

actions. For each state x and action u, the advantage, A(x,u), is stored, representing an estimate
of the degree to which the expected total discounted reinforcement is increased by performing
action u rather than the action currently considered best. The optimal value function V*(x)
represents the true value of each state. The optimal advantage function A*(x,u) will be zero if u
is the optimal action (because u confers no advantage relative to itself) and A*(x,u) will be
negative for any suboptimal u (because a suboptimal action has a negative advantage relative to
the best action). Advantage updating has been shown to learn faster than Q-learning (Watkins,
1989), especially for continuous-time problems (Baird, 1993, Harmon, Baird, & Klopf, 1995).

2.2 Advantage Learning

Advantage learning improves on advantage updating by requiring only a single function to be
stored, the advantage function A(x,u). Furthermore, advantage updating requires two types of
updates (learning and normalizing updates), while advantage learning requires only a single type
of update (the learning update). For each state-action pair (x,u), the advantage A(x,u) is stored,
representing the utilit y (advantage) of performing action u rather than the action currently
considered best. The optimal advantage function A*(x,u) represents the true advantage of each
state-action pair. The value of a state is defined as:

V * (x) = max
u

A* (x,u) (1)

The advantage A*(x,u) for state x and action u is defined to be:

A* (x,u) = V* (x) +
R+γ ∆tV* (x') − V* (x)

∆tK
(2)

where γ∆t is the discount factor per time step, K is a time unit scaling factor, and <> represents
the expected value over all possible results of performing action u in state x to receive immediate
reinforcement R and to transition to a new state x’ . Under this definition, an advantage can be
thought of as the sum of the value of the state plus the expected rate at which performing u
increases the total discounted reinforcement. For optimal actions the second term is zero,
meaning the value of the action is also the value of the state; for suboptimal actions the second
term is negative, representing the degree of suboptimality relative to the optimal action.

3 REINFORCEMENT LEARNING WITH CONTINUOUS STATES

3.1 Direct Algorithms

For predicting the outcome of a Markov chain (a degenerate MDP for which there is only one
possible action), an obvious algorithm is an incremental form of value iteration, which is defined
as:

V(x) ← 1−α()V(x) + α R+ γV(x')[] (3)

If V(x) is represented by a function-approximation system other than a look-up table, update (3)
can be implemented directly by combining it with the backpropagation algorithm (Rumelhart,
Hinton, & Willi ams, 86). For an input x, the actual output of the function-approximation system
would be V(x), the “desired output” used for training would be R+γV(x’) , and all of the weights
would be adjusted through gradient descent to make the actual output closer to the desired

3

output. Equation (3) is exactly the TD(0) algorithm, and could also be called the direct
implementation of incremental value iteration, Q-learning, and advantage learning.

3.2 Residual Gradient Algorithms

Reinforcement learning algorithms can be guaranteed to converge for lookup tables, yet be
unstable for function-approximation systems that have even a small amount of generalization
when using the direct implementation (Boyan, 95). To find an algorithm that is more stable than
the direct algorithm, it is useful to specify the exact goal for the learning system. For the
problem of prediction on a deterministic Markov chain, the goal can be stated as finding a value
function such that, for any state x and its successor state x’ , with a transition yielding immediate
reinforcement R, the value function will satisfy the Bellman equation:

V(x) = R+ γV(x') (4)

For a given value function V, and a given state x, the Bellman residual is defined to be the
difference between the two sides of the Bellman equation. The mean squared Bellman residual
for an MDP with n states is therefore defined to be:

E = 1

n
R+γV(x') − V(x)[]2

x

∑ (5)

Residual gradient algorithms change the weights in the function-approximation system by
performing gradient descent on the mean squared Bellman residual, E. This is called the
residual gradient algorithm.

The counterpart of the Bellman equation for advantage learning is:

A* (x,u) = R+ γ ∆t Amax
u

* (x' ,u)
1

∆tK
+ 1− 1

∆tK




 Amax

u

* (x, u) (6)

If A(x,u) is an approximation of A*(x,u), then the mean squared Bellman residual, E, is:

E = R+γ ∆t Amax
u

(x' ,u)
1

∆tK
+ 1− 1

∆tK




 Amax

u

(x,u) − A(x,u)






2

(7)

where the inner <> is the expected value over all possible results of performing a given action u
in a given state x, and the outer <> is the expected value over all possible states and actions.

3.3 Residual Algorithms

Direct algorithms can be fast but unstable, and residual gradient algorithms may be stable but
slow. Direct algorithms attempt to make each state like its successor, but ignore the effects of
generalization during learning. Residual gradient algorithms take into account the effects of
generalization, but attempt to make each state match both its successor and its predecessors. A
weighted average of a direct algorithm with a residual gradient algorithm could have guaranteed
convergence if the weighting factor φ is were chosen correctly. Such an algorithm would cause
the mean squared Bellman residual to decrease monotonically, but would not necessarily follow
the negative gradient, which would be the path of steepest descent. Therefore, it would be
reasonable to refer to such algorithms as residual algorithms (Baird, 1995).

There is the question of how to choose φ appropriately. One approach is to treat it as a constant,
li ke the learning rate constant. Just as a learning rate constant can be chosen to be as high as

4

possible without causing the weights to blow up, so φ can be chosen as close to 0 as possible
without the weights blowing up. A φ of 1 is guaranteed to converge, and a φ of 0 might be
expected to learn quickly if it is stable at all . However, this may not be the best approach. It
requires an additional parameter to be chosen by trial and error, and it ignores the fact that the
best φ to use initially might not be the best φ to use later, after the system has learned for some
time. Fortunately, it is easy to calculate the φ that ensures a decreasing mean squared residual,
while bringing the weight change vector as close to the direct algorithm as possible (described in
Section 6).

4 MULTI-PLAYER GAMES

The theory of Markov decision processes (Barto et al., 1989, Howard 1960) is the basis for most
of the recent reinforcement learning theory. However, this body of theory assumes that the
learning system’s environment is stationary and, therefore, contains no other adaptive systems.
Game theory (von Neumann and Morgenstern, 1947) is explicitl y designed for reasoning about
multi-player environments.

Differential games (Isaacs, 1965) are games played in continuous time, or use suff iciently small
time steps to approximate continuous time. Both players evaluate the given state and
simultaneously execute an action, with no knowledge of the other player's selected action. The
value of a game is the long-term, discounted reinforcement if both opponents play the game
optimally in every state. Consider a game in which player A tries to minimize the total
discounted reinforcement, while the opponent, player B, tries to maximize the total discounted
reinforcement. Given the advantage A(x,uA,uB) for each possible action in state x, it is useful to
define the minimax and maximin values for state x as:

minimax(x)= min
u

A

max
u

B

A x,uA ,uB
() (8)

maximin(x)= max
u

B

min
u

A

A x,uA ,uB
() (9)

If the minimax equals the maximin, then the minimax is called a saddlepoint and the optimal
policy for both players is to perform the actions associated with the saddlepoint. If a saddlepoint
does not exist, then the optimal policy is stochastic if an optimal policy exists at all . If a
saddlepoint does not exist, and a learning system treats the minimax as if it were a saddlepoint,
then the system will behave as if player A must choose an action on each time step, and then
player B chooses an action based upon the action chosen by A. For the algorithms described
below, a saddlepoint is assumed to exist. If a saddlepoint does not exist, this assumption confers
a slight advantage to player B.

5 INCREMENTAL DELTA-DELTA (IDD) FOR NONLINEAR FUNCTION
APPROXIMATORS

5.1 IDD Derivation

Incremental Delta-Bar-Delta (IDBD) was proposed by Sutton (1992) as an extension to the
Delta-Bar-Delta algorithm (Jacobs, 1988) that makes the algorithm amenable to incremental
tasks (learning tasks in which examples are processed one by one and then discarded). The
IDBD algorithm was described by Sutton as a meta-learning algorithm in the sense that it learns
the learning-rate parameters of an underlying base learning system. In Sutton (1992), the base

5

learning system was the Least-Mean-Square (LMS) rule, also known as the Widrow-Hoff rule
(Widrow and Stearns, 1985), and the IDBD algorithm was derived for linear function
approximation systems. Here, we present an extension to Jacobs (1988) Delta-Delta algorithm
that is appropriate for incremental training when using nonlinear function approximation
systems.

As in the IDBD algorithm, in IDD each parameter of the the neural network has an associated
learning rate of the form

αi (t) = eβi (t) (10)

(where i indicates the parameter of association) that is updated after each step of learning. There
are two advantages resulting from the exponential relationship of the learning rate, αi, and the
memory parameter that is actually modified, βi. First, this assures that αi will always be positive.
Second, it allows geometric steps in αi.. As βi is incremented or decremented by a fixed step-
size, then αi will move up or down by a fraction of its current value, allowing αi to become very
small. IDD updates βi by

β i (t +1) = β i (t) + θ
∆wi (t +1)

α i (t)
∆wi (t) (11)

where ∆wi is a change in the weight parameter wi, and θ is the meta-learning rate. The
derivation of IDD is similar in principle to that of IDBD and is presented below. We start with

β i (t +1) = βi (t) − θ
∂ 1

2 E2(t +1)

∂βi (t)
(12)

where E2 is the expected value of the mean squared error. Applying the chain rule we may

write

∂ 1
2 E2 (t +1)

∂βi (t)
=

∂ 1
2 E2 (t + 1)

∂wi (t +1)

∂wi (t +1)

∂α i (t)

∂α i (t)

∂β i (t)
(13)

By evaluating the last term of equation (13), shown in equation (14), and then substituting the
results we arrive at equation (15).

∂α i (t)

∂βi (t)
=

∂eβi

∂βi

= e
βi = α i (t) (14)

∂ 1
2 E2 (t +1)

∂βi (t)
=

∂ 1
2 E2 (t + 1)

∂wi (t +1)

∂wi (t +1)

∂α i (t)
α i (t) (15)

By evaluating the next to last term of equation (15) and rearranging, we find the equality
described by equation (16).

∂wi (t + 1)

∂αi (t)
=

∂
∂α i (t)

wi (t) −α i (t)
∂ 1

2 E2(t + 1)

∂wi (t)











6

∂wi (t + 1)

∂αi (t)
= −

∂ 1
2 E2(t +1)

∂wi (t)
(16)

Again, substituting the results of equation (16) into (15) produces

∂ 1
2 E2 (t +1)

∂βi (t)
= −

∂ 1
2 E2(t +1)

∂wi (t +1)

∂ 1
2 E2 (t +1)

∂wi (t)
α i (t) (17)

Next, we define the change in the parameter wi and rearrange for substitution.

∆wi (t) = −αi (t)
∂ 1

2 E2(t +1)

∂wi (t)

−
∆wi (t)

α i (t)
=

∂ 1
2 E2(t +1)

∂wi (t)

(18)

By substituting the left-hand side of the second half of equation (18) into equation (17), and then
deriving the equivalent of equation (18) for ∆wi (t +1) and substituting into equation (17), we
arrive at

∂ 1
2 E2 (t +1)

∂β i (t)
= −

∆wi (t +1)

α i (t)
∆wi (t) (19)

Thus

β i (t +1) = βi (t) + θ
∆wi (t + 1)

α i (t)
∆wi (t) (20)

The right-hand side of equation (19) provides a true unbiased estimate of the gradient of the
error surface with respect to the memory parameter, βi. An equivalent of IDBD for nonlinear
systems can trivially be derived from IDD by replacing ∆wi (t) with ∆ wi (t) , where ∆ wi (t) is an
exponentially weighted sum of the current and past changes to wi. The trace is defined by
equation (21).

∆ wi (t) = (1− ε)∆wi (t −1) + ε∆w i (t −1) (21)

This form of IDBD for nonlinear systems includes another free parameter, ε, that determines the
decay rate of the trace. If it were possible to choose ε perfectly for each training example, IDBD
would, in the worst case, be equivalent to IDD, and would on average provide a better estimate
of the gradient. However, the optimal value of ε is a function of the rate of change in the
gradient of the error surface, and is therefore different for different regions of state space.
Moreover, Jacobs’ original motivations for using delta-bar-delta rather than delta-delta are no
longer relevant when each learning rate is defined according to equation (10). For these reasons
we used IDD to speed the convergence rate for our testbed.

7

5.2 IDD Supervised Learning Results

The capabiliti es of IDD were initially assessed using a supervised-learning task. The intent of
this experiment was to answer the question: Does the IDD algorithm perform better than the
ordinary backpropogation algorithm? The task involved six real-valued inputs (including a bias)
and one output. The inputs were chosen independently and randomly in the range [-1, 1]. The
objective function was the square of the first input summed with the second input. The function
approximator was a single-hidden-layer sigmoidal network with 5 hidden nodes. For each
algorithm, we trained the network for 50,000 iterations and then measured the asymptotic error.
This process was repeated 100 times using
different initial random number seeds, and the
results were averaged. The experiment was
repeated for different values of α in the range
[0.35, 0.9]. The equivalent was done for the
IDD algorithm. The experiment was repeated
for values of the meta-learning rate θ in the
range [0.1, 1.0] in increments of 0.1. The
results are presented in Figure 1, and show that
the IDD algorithm finds a distribution of
learning rates that is better than any single

learning rate shared by all weights. The IDD algorithm
consistently reduced the error by an order of magnitude

more than backprop alone.

6 SIMULATION OF THE GAME

6.1 RESIDUAL ADVANTAGE LEARNING

During training, a state is chosen from a uniform random distribution on each learning cycle.
The vector of weights in the function approximation system, W, is updated according to
equation (22) on each learning cycle.

∆W= −α R+γ ∆tAmin max(x' ,u)() 1
∆tK

+ 1− 1
∆tK





 Amin max(x,u)−A(x,u)







• φγ ∆t
∂

∂W
Amin max(x' ,u)

1
∆tK

+ φ 1− 1
∆tK







∂
∂W

Amin max(x,u)−
∂

∂W
A(x,u)







(22)

The parameter φ is a constant that controls a trade-off between pure gradient descent (when φ
equals 1) and a fast direct algorithm (when φ equals 0). A φ that ensures a decreasing mean
squared residual, while bringing the weight change vector as close to the direct algorithm as
possible can be calculated by maintaining an estimate of the epoch-wise weight change vectors.
These can be approximated by maintaining two scalar values, wd and wrg associated with each
weight w in the function approximation system. These are traces, averages of recent values,
used to approximate ∆Wd and ∆Wrg. The traces are updated on each learning cycle according to:

0.01

0.1

1

αα

0.01

0.1

1

ΘΘ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Asy mpt ot ic
Er r o r

0.35 0.4 0.5 0.6 0.7 0.8 0.9

Backprop

IDD

Asy mpt ot ic
Er r o r

Figure 1: Comparison of IDD and

the backpropogation algorithms

8

wd ← (1− µ)wd − µ R+ γ ∆t Amin max
(x' ,u)()/ ∆tK + 1−1/ ∆tK()Amin max

(x, u)[]
• −

∂
∂w

Amin max
(x,u)





(23)

wrg ← (1− µ)wrg − µ
R+ γ ∆ t A

min max
(x' ,u)()/ ∆tK +

1−1/∆tK()Amin max
(x, u) − A(x,u)











•
γ ∆t ∂

∂w
A

min max
(x' ,u)





 / ∆tK() +

1−1/ ∆tK() ∂
∂w

A
min max

(x,u) − ∂
∂w

A(x,u)

















(24)

where µ is a small , positive constant that governs how fast the system forgets. On each time step
a stable φ is calculated by using equation (25). This ensures convergence while maintaining fast
learning:

φ =
wdwrg

w

∑
(wd − wrg)wrg

w
∑

+ µ (25)

It is important to note that this algorithm does not follow the negative gradient, which would be
the steepest path of descent. However, the algorithm does cause the mean squared residual to
decrease monotonically (for appropriate φ), thereby guaranteeing convergence to a local
minimum of the mean squared Bellman residual.

6.2 GAME DEFINITION

Our system is a differential game with a missile pursuing a plane, as in Rajan, Prasad, and Rao
(1980) and Milli ngton (1991). The action performed by the missile is a function of the state.
The action performed by the plane is a function of the state and the action of the missile. The
use of the minimax for determination of policy guarantees a solution to the game by ensuring a
deterministic system.

The game is Markov with continuous states and nonlinear dynamics. The state x is a vector
(xm,xp) composed of two elements: the state of the missile, xm, and the state of the plane, xp,
each of which are vectors composed of four elements containing the scalar values of the x and y
coordinates and x and y velocities of the players in two-dimensional space. The action u is a
vector (um,up) composed of two scalar elements. The element um represents the action
performed by the missile, and the element up represents the action performed by the plane; an
action value of 0.5 indicates an instantaneous 90-degree change of heading to the left of the
current heading, and an action value of -0.5 indicates an instantaneous 90-degree change of
heading to the right of the current heading. The next state x

t+1
 is a nonlinear function of the

current state x
t
and action u

t.
 The speed of each player is fixed, with the speed of the missile

twice that of the plane. Therefore, the Euclidean distance measure of the change in position for
one state transition is a fixed scalar value for each player, with the value for the missile being
twice that of the value for the plane. On each time step the heading of each player is updated
according to the action chosen, the velocity in both the x and y dimensions is computed for each

9

player, and the positions of the players are updated. Pseudocode describing these dynamics
follows:

deg2rad - converts degrees to radians; // trigonometric functions measured in radians
Plane_action - actions chosen by plane;
Plane_theta - current heading of plane in 2d space;
Missile_velocity_X - component vector velocity of missile in x dimension;
Missile_velocity_Y - component vector velocity of missile in y dimension;

1) If (Plane_action = 0.5) then Plane_theta = Plane_theta + 90 * deg2rad;

else Plane_theta = Plane_theta - 90 * deg2rad;

2) Repeat step 1 for Missile.

3) Normalize Plane_theta and Missile_theta.

4) Missile_velocity_X = Missile_speed * cos(Missile_theta);

5) Missile_velocity_Y = Missile_speed * sin(Missile_theta);

6) Repeat steps 4 & 5 for Plane;

The reinforcement function R is a function of the distance between the players. A reinforcement
of 1 is given when the Euclidean distance between the players is greater than 2 units (plane
escapes). A reinforcement of -1 is given when the distance is less than 0.25 units (missile hits
plane). No reinforcement is given when the distance is in the range [0.25,2]. The missile seeks
to minimize reinforcement, while the plane seeks to maximize reinforcement.

The advantage function is approximated by a single-hidden-layer neural network with 50 hidden
nodes. The hidden-layer nodes each have a sigmoidal activation function, the output of which
lies in the range [-1,1]. The output of the network is a linear combination of the outputs of the
hidden-layer nodes with their associated weights. To speed the rate of convergence we used
IDD as described in Section 5. There are 6 inputs to the network. The first 4 inputs describe the
state and are normalized to the range [-1,1]. They consist of the differences in positions and
velocities of the players in both the x and y dimensions. The remaining inputs describe the
action to be taken by each player; 0.5 and -0.5 indicate left and right turns, respectively.

7 RESULTS

Experiments were formulated to accomplish three objectives. The first objective was to
determine heuristically to what degree residual advantage learning could learn a reasonable
policy for the missile/aircraft system. In Harmon, Baird, and Klopf (1995) it was possible to
calculate the optimal weights for the quadratic function approximator used to represent the
advantage function. This is not the case for the current system. The nonlinear dynamics of this
system require more representational capacity than a simple quadratic network to store the
advantage function. In using a single hidden-layer sigmoidal network we gain the
representational capacity needed but lose the abilit y to calculate the optimal parameters for the
network, which would have been useful as a metric. For this reason, our metric is reduced to
simple observation of the system behavior, and is analogous to the metric used to evaluate
Tesauro’s TD-Gammon (Tesauro, 1990). Also, it is possible this game might be made less
diff icult to solve if expressed in an appropriate coordinate system, such as plane and missile
centered polar coordinates. However, the motivation for this experiment is to demonstrate the

10

abilit y of residual algorithms to solve diff icult, nonlinear control problems using a general neural
network. For this reason, the game was explicitly structured to be difficult to solve.

The second objective was to analyze the performance of three different forms of advantage
learning: the residual gradient form, the direct form, and a weighted average of the two (values
of φ in the range [0, 1]). The third and final objective was to evaluate the utilit y of IDD for this
test-bed, and to address the following question. When using residual algorithms, which method
increases the rate of convergence the most: 1) Using the residual gradient form of the algorithm
with a second order method or, 2) Using the residual form of the algorithm with an adaptive φ
or,
3) Some combination of the two?

Addressing the first objective, the reinforcement learning system implementing the residual form
of advantage learning produced a reasonable policy after 800,000 training cycles. The missile
learned to pursue the plane, and the plane learned to evade the missile. Interesting behavior was
exhibited by both players under certain initial conditions. First, the plane learned that in some
cases it is able to evade indefinitely the missile by continuously flying in circles within the
missile’s turn radius. Second, the missile learned to anticipate the position of the plane. Rather
than heading directly toward the plane, the missile learned to lead the plane under appropriate
circumstances.

(a) (b)

Figure 2 (a) Demonstration of missile leading plane after learning and (b) ultimately hitting the plane.

(a)

(b)

Figure 2 (a) Demonstration of the ability of the plane to survive indefinitely by flying in continuous circles within the
missile’s turn radius. (b) Demonstration of the learned behavior of the plane to turn toward the missile to increase the
distance between the two in the long term.

In Experiment 2, the effects of different values of φ, the weighting factor used in the linear
combination of the residual gradient update vector and the direct method update vector, and the
use of IDD on the learning system’s convergence rate were compared. For ∆t values of 1.0 and
0.1, twelve different runs were accomplished, each using identical parameters with the exception

11

of the weighting factor φ and the use or non-use of IDD. Figure 3 presents the results of these
experiments. A φ of 1 yields advantage learning in the residual gradient form, while a φ of 0
yields advantage learning implemented in the direct form.

Figure 3: φ comparison

A φ of 1, which yields the residual gradient
algorithm, minimized the mean squared Bellman
residual more than the other values of φ test,
including the adaptive φ. The use of IDD did
result in a lower total error in all comparisons.
Furthermore, the use of IDD was imperative for
finding a control policy that generated
reasonable trajectories for the aircraft. The use
of IDD not only increased the rate of

convergence, but resulted in a smaller asymptotic error level. When training with a value of 0
for the parameter φ, reducing the algorithm to the direct method of advantage learning, the
weights grew without bound when using a time duration, ∆t, of 0.1.

Residual algorithms increase the speed of convergence by following the gradient of the direct
method as close as possible, while still guaranteeing convergence to a local minimum by
ensuring the weight change vectors monotonically reduce the mean squared Bellman residual
error. By combining residual algorithms with IDD, we have two separate mechanisms pursuing
the same goal: a fast rate of convergence. How these mechanisms interact, complement, or
inhibit one another is not fully understood. It was necessary to put a ceiling of -4 on the growth
of β to ensure system stability. One might think that by simply decreasing the meta-learning rate
θ, one would not need to add heuristically a ceiling to the parameter β. This turned out not to be
the case. Even for a very small θ, there did exist β that grew to the point of causing the system
to be unstable (the weights grew to infinity).

Further research is needed to determine if, in general, using second-order methods with residual
gradient algorithms is desirable over using residual algorithms with an adaptive φ. Although this
was the case for the experiments described above, the following results were also generated
using the missile/aircraft test-bed using slightly different parameter settings (e.g., k, ∆t, µ).
These results reflect the use of IDD.

Figure 4: The use of an adaptive φ reduced the mean

squared Bellman residual further than any of the

tested fixed φ’s.

For this set of experiments the Bellman error was minimized the most by combining the use of
an adaptive φ with the use of IDD. The resultant control policy from these experiments also
produced aircraft trajectories that looked reasonable. It is the case that using IDD resulted in a
lower mean squared Bellman error for all values of φ, including the adaptive φ. Why this is the
case and how these mechanisms interact will be explored in future research.

0.1

1

10

Adapt ive 00.250.50.751

dd ∆t =0.1

bp ∆t =0.1

dd ∆t =1

bp ∆t =1

θ

Asympt ot ic
 Error

Saf e Fast

0

5

10
15

20

25

1 0.75 0.5 0.25 0

Mean
Squared
Bellman
Error

φ

adapt ive φ
f ixed φ

12

8 CONCLUSIONS

The results gathered using the missile/aircraft test-bed provide evidence that residual forms of
reinforcement learning algorithms produce reinforcement learning systems that are stable and
converge to a local minimum of the mean squared Bellman residual when using general function
approximation systems. In general, non-linear problems of this type are diff icult to solve with
classical game theory and control theory, and therefore appear to be good applications for
reinforcement learning.

The data also suggests that the use of second-order methods may be desirable or even necessary,
as was the case for this test-bed, to generate the desired control policy. Although much research
has been accomplished investigating approaches for speeding rates of convergence, the results
gathered from applying these methods in supervised learning tasks may not necessarily hold true
for reinforcement learning tasks. This stems from fundamental differences in the nature of
supervised and reinforcement learning. For this reason, we feel that a rigorous comparison of
these methods implemented in a reinforcement learning system is an appropriate topic for future
research.

Acknowledgments

This research was supported under Task 2312R1 by the United States Air Force Off ice of
Scientific Research. Thanks to Michael Littman for a useful discussion of Markov games. We
also wish to thank Matt Rizki and Lou Tambourino of the Adaptive Vision Laboratory at Wright
State University for making available the use of their equipment.

References

Baird, L.C. (1993). Advantage updating Wright-Patterson Air Force Base, OH. (Wright
Laboratory Technical Report WL-TR-93-1146, available from the Defense Technical
information Center, Cameron Station, Alexandria, VA 22304-6145).

Baird, L. C. (1995). Residual Algorithms: Reinforcement Learning with Function
Approximation. In Armand Prieditis & Stuart Russell , eds. Machine Learning: Proceedings of
the Twelfth International Conference, 9-12 July, Morgan Kaufman Publishers, San Francisco,
CA.

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H. (1989). Learning and sequential decision
making. Technical Report 89-95, Department of Computer and Information Science, Univeristy
of Massachusetts, Amherst, Massachusetts. Also published in Learning and Computational
Neuroscience: Foundations of Adaptive Networks, Michael Gabriel and John Moore, editors.
MIT Press, Cambridge MA (1991).

Boyan, J.A., and Moore, A.W. (1995). Generalization in reinforcement learning: Safely
approximating the value function. In Tesauro, G., Touretzky, D.S., and Leen, T.K. (eds.),
Advances in Neural Information Processing Systems 7. MIT Press, Cambridge MA.

Isaacs, Rufus (1965). Differential games. New York: John Wiley and Sons, Inc.

Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural
Networks 1, pp. 295-307.

13

Harmon, M.E., Baird, L.C, & Klopf, A.H. (1995). Advantage updating applied to a differential
game. In Tesauro, G., Touretzky, D.S., and Leen, T.K. (eds.), Advances in Neural Information
Processing Systems 7. MIT Press, Cambridge MA.

Howard, R. A. (1960). Dynamic Programming and Markov Processes. MIT Press, Cambridge
MA.

Milli ngton, P. J. (1991). Associative reinforcement learning for optimal control. Unpublished
master's thesis, Massachusetts Institute of Technology, Cambridge, MA.

Rajan, N., Prasad, U. R., and Rao, N. J. (1980). Pursuit-evasion of two aircraft in a horizontal
plane. Journal of Guidance and Control. 3(3), May-June, 261-267.

Rumelhart, D., Hinton, G., & Willi ams, R. (1986). Learning representations by backpropagating
errors. Nature. 323, 9 October, 533-536.

Sutton, R. S. (1992). Adapting bias by gradient descent: an incremental version of delta-bar-
delta. In Proceedings of the Tenth National Conference on Machine Learning. MIT Press, pp.
171-176, Cambridge MA.

Tesauro, G. (1990). Neurogammon: A neural-network backgammon program. Proceedings of
the International Joint Conference on Neural Networks (pp. 33-40). San Diego, CA.

Von Neumann, J., and Morgenstern, O. (1947). Theory of Games and Economic Behavior.
Princeton University Press, Princeton NJ.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. Doctoral thesis, Cambridge
University, Cambridge, England.

Widrow, B., and Stearns, S. D. (1985). Adaptive Signal Processing. Englewood Cli ffs, NJ:
Prentice-Hall.

