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[57] ABSTRACT

A new algorithm for reinforcement learning, advantage
updating, is proposed. Advantage updating is a direct learn-
ing technique; it does not require a model to be given or
learned. It is incremental, requiring only a constant amount
of calculation per time step, independent of the number of
possible actions, possible outcomes from a given action, or
number of states. Analysis and simulation indicate that
advantage updating is applicable to reinforcement learning
systems working in continuous time (or discrete time with
small time steps) for which Q-learning is not applicable.
Simulation results are presented indicating that for a simple
linear quadratic regulator (LQR) problem with no noise and
large time steps, advantage updating learns slightly faster
than Q-learning. When there is noise or small time steps,
advantage updating learns more quickly than Q-learning by
a factor of more than 100,000. Convergence properties and
implementation issues are discussed. New convergence
results are presented for R-learning and algorithms based
upon change in value. It is proved that the leaming rule for
advantage updating converges to the optimal policy with
probability one.

10 Claims, 4 Drawing Sheets
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LEARNING CONTROLLER WITH
ADVANTAGE UPDATING ALGORITHM

RIGHTS OF THE GOVERNMENT

The invention described herein may be manufactured and
used by or for the Government of the United States for all
governmental purposes without the payment of any royalty.

BACKGROUND OF THE INVENTION

The present invention relates generally to an algorithm
which is a general learning controller. More particularly, it
is an algorithm which stores two functions, and updates
them on the basis of reinforcement received from the
environment.

The invention has potential uses in aircraft (such as for
flight control), vehicles, robots, and manufacturing automa-
tion. One of the most general problems in control theory is
the problem of creating an optimal controller for a nonlinear,
stochastic, poorly modeled system.

The following United States patents are of interest.
U.S. Pat. No. 5,257,343—Kyuma et al
U.S. Pat. No. 5,250,886—Yasuhara et al

None of the above patents disclose an algorithm for
reinforcement learning requiring only a constant amount of
calculation per time step, independent of the number of
possible actions, possible outcomes from a given action, or
number of states. The patent to Kyuma et al discloses an
intelligence information system composed of an associative
memory and a serial processing computer. The patent to
Yasuhara et al discloses a method of storing teaching points
of a robot. When teaching points for a plurality of moving
units are input, information for identifying the moving units
associated with the teaching points is input, and the teaching
points and the identification data are stored in a single area
of a memory.

References

Baird, L. C. (1992). Function minimization for dynamic
programming using connectionist networks. Proceedings
of the IEEE Conference on Systems, Man, and Cybernei-
ics (pp. 19-24). Chicago, 1li.

Baird, L. C., & Klopf, A. H. (1993a). A hierarchical network
of provably optimal learning control systems: Extensions
of the associative control process (ACP) network. Adap-
tive Behavior, 1(3), 321-352.

Baird, L. C., & Klopf, A. H. (1993b). Reinforcement Learn-
ing with High-Dimensional, Continuous Actions. To
appear as a United States Air Force technical report.

Bertsekas, D. P. (1987). Dynamic Programming: Determin-
istic and Stochastic Models. Englewood Cliffs, N.J.: Pren-
tice-Hall.

Bradike, S. J. (1993). Reinforcement learning applied to
linear quadratic regulation. Proceedings of the Fifth Con-
ference on Neural Information Processing Systems (pp.
265-302). Morgan Kaufmann.

Gullapalli, V. (1990). A stochastic reinforcement learning
algorithm for learning real-valued functions. Neural Net-
works, 3, 671-692

Jaakkola, T., Jordan, M. L., & Singh, S. P. (1993). On the
Convergence of Stochastic Iterative Dynamic Program-
ming Algorithms (Tech. Rep. 9307). Department of Brain
and Cognitive Sciences, Massachusetts Institute of Tech-
nology, Cambridge, Mass.

Jacobson, D. H., & Mayne, D. Q. (1970). Differential
Dynamic Programming. New York: American Elsevier
Publishing Company.

10

15

20

25

30

35

40

45

50

55

60

65

2

Klopf, A. H., Morgan, J. S., & Weaver, S. E. (1993). A
hierarchical network of control systems that learn: Mod-
eling nervous system function during classical and instru-
mental conditioning. Adaptive Behavior, 1(3), 263-319.

Nguyen, D. H., & Widrow, B. (1990). Neural networks for
self-learning control systems. IEEE Control Systems
Magazine, (April), 18-23.

Ross, S. (1983). Introduction to Stochastic Dynamic Pro-
gramming. New York: Academic Press.

Schwartz, A. (1993). A reinforcement learning method for
maximizing undiscounted rewards. Proceedings of the
Tenth International Conference on Machine Learning (pp.
298-305). Amherst, Mass.

Sutton, R. S. (1990a). Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. Proceedings of the Seventh International
Conference on Machine Learning.

Sutton, R. S. (1990b). Talk on a new performance measure
for reinforcement learning, presented at GTE laboratories,
Waltham, Mass., 11 September.

Tesauro, G. (1992). Practical issues in temporal difference
learning. Machine Learning, 8(3/4), 257-271.

Watkins, C. J. C. H. (1989). Learning from delayed rewards.
Doctoral thesis, Cambridge University, Cambridge,
England.

Watkins, C. J. C. H., & Dayan, P. (1992). Technical note:
Q-learning. Machine Learning, 8(3/4), 279-292.

White, D. A, & Sofge, D. A. (1990). Neural network based
process optimization and control. Proceedings of the 29th
Conference on Decision and Control. (pp. 3270-3276),
Honolulu, Hi.

White, D. A., & Sofge, D. A. (Eds.). (1992). Handbook of
Intelligent Control: Neural, Fuzzy, and Adaptive
Approaches. New York: Van Nostrand Reinhold.

Williams, R. J., & Baird, L. C. (1990). A mathematical
analysis of actor-critic architectures for learning optimal
control through incremental dynamic programming. Pro-
ceedings of the Sixth Yale Workshop on Adaptive and
Learning Systems (pp. 96-101). New Haven, Conn.

Williams, R. J., & Baird, L. C. (1993). Analysis of Some
Incremental Variants of Policy Iteration: First Steps
Toward Understanding Actor-Critic Learning Systems.
(Tech. Rep. NU-CCS-93-11). Boston, Mass.: Northeast-
ern University, College of Computer Science.

SUMMARY OF THE INVENTION

One of the most general problems in control theory is the
problem of creating an optimal controlier for a nonlinear,
stochastic, poorly modeled system. Almost any control
problem can be viewed as being a problem of this type. An
objective of the invention is to provide an improved algo-
rithm for reinforcement leaming. The invention is an algo-
rithm that can learn to be an optimal controller for a
nonlinear stochastic system, even if no model is initially
known. As shown in the block diagram of FIG. 8, the
controller 80 controls a plant 82.

The Advantage Updating controller 80 is made of several
components. As shown in FIG. 9, these may comprise a unit
90 for equations for actions selection and learning, a unit 92
for a value function, and a unit 94 for the advantage
function. The actuators 96 and the sensors 97 and 98 may be
considered as part of the plant 82. A computer code listing
maybe found at the end of this specification.

The invention relates to an algorithm which is a learning
controller. The algorithm stores two functions, and updates
them on the basis of reinforcements received from the
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environment. The new algorithm for reinforcement learning,
advantage updating, is a direct learning technique; it does
not require a model to be given or learned. It requires only
a constant amount of calculation per time step, independent
of the number of possible actions, possible outcomes from
a given action, or number of states. Analysis and simulation
indicate that advantage updating is applicable to reinforce-
ment learning systems working in continuous time (or
discrete time with small time steps) for which Q-learning
(the current method used for updating) is not applicable.
Simulation results are presented indicating that for a simple
Linear Quadratic Regulator (LQR) problem with no noise
and large time steps, advantage updating learns slightly
faster than Q-learning. When there is noise or small time
steps, advantage updating learns more quickly than Q-learn-
ing by a factor of more than 100,000.

For learning, perform action u, in state x,, leading to state
X.4a7 and reinforcement R,,(x,, u,). Update A. This changes
A, .- Update V based on the change in A,,,.. For normal-
izing, choose an action u randomly, with uniform probabil-
ity. Perform action u in state x, and update A:

YV ) + Rarx, w) — V)
At

Amaxnew(xz) - Amaxnu(xl)

Alx, w)

Amax(X) +

Vi) <3 vy +

o

AG u) <2 A 1) ~ An()

Wheré
X<y

means that a supervised learning system (function approxi-
mation system) that gives an output of X is trained instead
to give an output of Y. That is, the desired output is Y. The
training uses a learning rate of o. For a lookup table, this is
equivalent to replacing the entry X in the table with the value
(1-o)X+aY. For continuous time, the equations are found
by taking the limit as At goes to zero, so the second two
updates remain unchanged, and the first update becomes:

For optimal control, where the goal is to maximize total
discounted reinforcement, u is a scalar or a vector, and A,
is defined as:

Amax(x) = max A(x,u)
u

For differential games, u is a vector (u',u") where u' is the
action performed by the player trying to minimize total
discounted reinforcement, and u" is the action performed by
the player trying to maximize total discounted reinforce-
ment. The actions u' and u" can be either vectors or scalars.
A, .. is defined as:

Apmar(x) =min max A(x,u’,u")
R

This finds the optimal policy for games for which a
saddlepoint exists. If no saddlepoint exists, then it finds the
optimal policy for the game in which the minimizing player
is constrained to use a deterministic policy, and the maxi-
mizing player knows the minimizing player’s policy before
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4
choosing his own policy. Advantage updating learning is
equivalent to Q-learning when:

B=aAt
Q=(A-A,, AV,

The residual gradient form of advantage updating is
applicable to learning with an arbitrary function-approxima-
tion system. The change in an arbitrary weight W should be:

AW=a ( A (Railii) + <V ~ V) +

Wi v
Amase) = AG0) ) : (Al—, ( yu ) ——a‘;‘;’—)
0Ama(x) aA(xhul) 0Amar(x)
( W T W ) )‘“A'"‘“("‘) oW

where <V(x,,,)> is the expected value of the next state,
considering possible next states for the given state x, and
action u,.

learning updates

} normalizing update

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1a and 1b are diagrams showing a deterministic
MDP with two states and two actions for which R-learning
converges, but does not learn to distinguish the T-optimal
policy from nonoptimal policies;

FIGS. 2a and 2b are diagrams showing a deterministic
MDP with eight states, two actions, and a time step At=1 for
which the action updates are not guaranteed to converge;

FIG. 3 is a graph showing the optimal trajectory for the
linear quadratic regulator (LQR) problem, starting at x,=1,
for continuous time (solid line) and for discrete time with
time steps of duration 5 (dashed line);

FIG. 4q, FIG. 4b and FIG. 4c are a set of diagrams
showing the optimal value function V" for the LQR prob-
lem;

FIG. 4d, FIG. 4e and FIG. 4f are a set of diagrams
showing policy* functions for the LQR problem;

FIG. 4g, FIG. 4h and FIG. 4i are a set of diagrams
showing Q function Q* for the LQR problem;

FIG. 5a is a diagram showing the optimal advantage
function A™ for the LQR problem for time steps of duration
5;

FIG. 5b is a diagram showing the optimal advantage
function A* for the LQR problem for time steps of duration
1.

FIG. 5¢ is a diagram showing the optimal advantage
function A* for the LQR problem for time steps of duration
0.0001.

FIG. 6 is a graph showing time steps required for learning
as a function of noise;

FIG. 7 is a graph showing time steps required for learning
as a function of time step duration, At;

FIG. 8 is a block of an advantage update controller and a
plant; and
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FIG. 9 is a block diagram of an advantage update con-
troller.

DETAILED DESCRIPTION

The invention is disclosed in a technical report WL-TR-
93-1146 by Leemon C. Baird III, titled “Advantage Updat-
ing”, November, 1993, published by the Avionics Director-
ate, Wright Laboratory, Air Force Material Command,
Wright Patterson AFB 45433-7409. A copy of the report is
included with the application as filed with the Disclosure
Statement, and is hereby incorporated by reference.

REINFORCEMENT LEARNING SYSTEMS

A reinforcement learning system typically uses a set of
real-valued parameters to store information that is learned.
When a parameter is updated during learning, the notation

WK m

represents the operation of instantaneously changing the
parameter W so that its new value is K, whereas

W<tk

represents the operation of moving the value of W toward
K. This is equivalent to

@

W e (1-0)W ,HOK ®

where the learning rate o is a small positive number.
Appendix A summarizes this and other notation conven-
tions.

A Markov sequential decision process (MDP) is a system
that changes its state as a function of its current state and
inputs received from a controller. The set of possible states
for a given MDP, and the set of possible actions from which
the controller can choose, may each be finite or infinite. At
time t, the controller chooses an action u,, based upon the
state of the MDP, x,. The MDP then transitions to a new state
X,.a, Where At is the duration of a time step. The state
transition may be stochastic, but the probability P(u,,X,.X,,A,)
of transitioning from state x, to state x,, ,, after performing
action u, is a function of only x,, x,,,, and u,, and is not
affected by previous states or actions. If there are a finite set
of possible states and actions, then P(u,X,,X,,,,) is & prob-
ability. If there are a continuum of possible states or actions,
then P(u,.x,,X,.,) is a probability density function (PDF). If
time is continuous rather than discrete, then P(u,,x,, x,) is the
probability that action u, will cause the rate of change of the
state to be x,. The MDP also sends the controller a scalar
value known as reinforcement. If time is discrete, then the
total reinforcement received by the controller during time
step tis R, (x,,u,). If time is continuous, then the rate of flow
of reinforcement at time t is r(x,u,).

A reinforcement learning problem is the problem of
determining which action is best in each state in order to
maximize some function of the reinforcement. The most
common reinforcement learning problem is the problem of
finding actions that maximize the expected total discounted
reinforcement, which for continuous time is defined as

E J Yrix,u)dt
0
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6

where E(-) denotes expected value, and where O<grl is
the discount factor which determines the relative signifi-
cance of early versus later reinforcement. For discrete time,
the total discounted reinforcement received during one time
step of duration At when performing action ut in state x, is
defined as:

1+ A &)
Ra(xiug) = f Yir(xun)dt
t

The goal for a discrete-time controller is to find actions
that maximize the expected total discounted reinforcement:

. ©
E ( r:ZO CYMYRAdxe At A1) )

This expression is often written with At not shown and
with v chosen to implicitly reflect At, but is written here with
the At shown explicitly so that expression (6) will reduce to
expression (4) in the limit as At goes to zero. A policy, t(x),
is a function that specifies a particular action for the con-
troller to perform in each state x. The optimal policy for a
given MDP, n°(x), is a policy such that choosing u=r"(x,)
results in maximizing the total discounted reinforcement for
any choice of starting state. If reinforcement is bounded,
then at least one optimal policy is guaranteed to exist. The
value of a state, V'(x), is the expected total discounted
reinforcement received when starting in state x and choosing
all actions in accordance with an optimal policy. The func-
tions stored in a learning system at a given time are
represented by variables without superscripts such as 7, V,
A, or Q. The true, optimal functions that are being approxi-
mated are represented by * superscripts, such as ¥, V¥, A¥,
or Q*,

Expression (6) is the most common performance measure
for defining a reinforcement learning problem, but it is not
the only conceivable measure. For example, Sutton (1990b)
and others have considered a different performance measure,
which Schwartz (1993) calls T-optimality. For this perfor-
mance measure, the problem is to find a policy that maxi-
mizes the average reinforcement r, which is defined as:

n—1 )]
|2 E(Rp{xianuind)

_ 0D

p= lim
n—yeo

n

A policy that maximizes r is always defined to be better
than a policy that does not maximize r. If two policies both
maximize 1, then the better policy is defined to be the one
with the larger average adjusted value s, which is defined as:

gt mel ERul - p) ®
Xi-AnUj., bt
e lim b 0 AXiALULAD) — P
n—yeo

n

A policy is said to be T-optimal if it maximizes r and has
the largest s of all the policies that maximize r. This means
that a learning system using this performance measure will
first try to maximize the average of all future reinforcements.
If there is time, and several policies that all maximize the
average reinforcement, then it will choose the policy that
also maximizes near-term reinforcement. T-optimal policies
do not always exist for every MDP. If T-optimal policies do
exist for a given MDP, they may all be nonstationary, so that
the optimal action in a given state may not be a deterministic
function of the state alone (Ross, 1983). If stationary T-op-
timal policies exist, it is not clear how to leam them. A
reinforcement learning system is a system that is capable of
solving reinforcement learning problems. One reinforce-
ment learning system for finding T-optimal policies has been
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proposed by Schwartz (1993). The algorithm requires that an
R value be stored for each state-action pair, and that a global
scalar 1 be siored. R values are represented here by script
letters (®) to distinguish them from reinforcement (R). The
update rules for R-learning are as follows, where the learn-
ing system performs action u in state x, resulting in rein-
forcement R and a transition to state x":

(&)
Rxw) <—13— Ra(xu) ~p +max Q(x'u)
u

If the action performed follows the current policy, then:

o 10
p<—— Rafxu)+max ROU) —max Qlxu)
u u'

1t is not clear whether R-learning will always cause the R
values to converge. Even when R-learning does converge,
and a stationary T-optimal policy does exist, it is still
possible for R-learning to converge to the wrong answer.
FIG. 1 shows one example where R-learning has converged,
but the final R values erroneously indicate that all possible
policies are equally good. This MDP has the property that
any policy under consideration has a single average reward
independent of the initial state. It might be expected that this
property would ensure that whenever R-learning converges
it must arrive at a T-optimal policy, but that is not the case.
R-leamning is a recent development, and it is possible that
future versions of R-learning will avoid this difficulty. The
use of undiscounted performance measures in reinforcement
learning is an important question and deserves further
research, but due to the current difficulties with using the
T-optimality performance measure, it will not be considered
further here. The following discussions and results all per-
tain to the problem of maximizing the standard performance
measure (expected discounted reinforcement) given in
expression (6).

FIGS. 1a and 1b are diagrams showing a deterministic
MDP with two states and two actions for which R-learning
converges, but does not learn to distinguish the T-optimal
policy from nonoptimal policies. T-optimal is the undis-
counted performance measure defined by Schwartz (1993).

FIG. 1a shows the names of the states (1 and 2) and
actions (A and B). It also shows the immediate reinforce-
ment received when performing each action in each state
(=10, 0, and 10). FIG. 1b shows the initial R values before
learning starts. Initially, =0, which is correct because all
possible policies yield an average reinforcement of zero
when starting in any state. This MDP has the property that
any policy under consideration has a single average reward
independent of the initial state. It might be expected that this
property would ensure that whenever R-learning converges
it must arrive at a T-optimal policy, but that is not the case.
The T-optimal policy is to choose action A in both states. The
worst possible policy is to choose action B in both states.
The initial R values erroneously indicate that all possible
policies are equally good. Repeated applications of the
R-learning update rules result in no changes to r or to any of
the R values. Therefore, R-learning will never discover that
the policy of always choosing A is better than the policy of
always choosing B.

One of the earliest methods for finding policies that
maximize expression (6) is the algorithm known as value
iteration (or simply called the dynamic programming algo-
rithm by Bertsekas, 1987). Value iteration is an algorithm for
finding the optimal policy x*, given the transition probabili-
ties P and the reinforcement function R. Value iteration
stores a value V(x) for each state x. The values are initialized
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8

to arbitrary numbers, and then are updated repeatedly
according to the update rule:

Qan
V(x) < max [ Radxu) + 4 2 P(u,x,x)V(x') ]
u X

If this procedure is performed infinitely often in every
state, then each value V(x) is guaranteed to converge to the
optimal value V*(x). For a given MDP, the function V*(x) is
the unique solution to the Bellman equation:

12
V(x) = max [ Rado,u) + Y 2 Pu,x,x)V(x') ]
u X

After convergence, the optimal policy is implied by the
value function, and can be found quickly:

a3
n¥*(x)=argmax I Plu,xx)[Rafx,u) + YV
u X

Simple value iteration is not well suited, however, for
reinforcement learning in general. First, it requires that the
probabilities and reinforcement function be known. If they
are not known, then a separate learning procedure must
estimate them. If there are n possible states and m possible
actions, the algorithm requires O(nm) calculations to per-
form a single update. If there is a continuum of possible
states and actions, then the summation becomes an integral,
and the maximization is performed over an infinite set of
integrals. If each state and action is a high-dimensional
vector, then an approximation to update (11) will typically
require O(nm) calculations, where n and m each scale
exponentially with the dimension.

The scaling problems of value iteration can be addressed
by more incremental algorithms that require fewer calcula-
tions per update. Such algorithms typically store more
information than just the V(x) that is stored during learning
for value iteration. For example, an algorithm might store
both an estimate of the optimal value of each state, V(x), and
an estimate of the optimal action for each state, w(x). There
are various incremental, asynchronous algorithms for learn-
ing with such a system. Unfortunately, these typically
require that m(x) change instantaneously during an update,
which may not be possible if m(x) is stored in a general
function approximation system such as a neural petwork.
Function approximation systems typically change gradually
rather than instantaneously. Also, these algorithms are not
guaranteed to converge, even when there are only a finite
number of states and actions (Williams and Baird, 1990,
1993).

For systems with a continuum of states and actions,
differential dynamic programming (Jacobson and Mayme,
1970) avoids the need to instantaneously change the policy.
This algorithm is typically used to find an optimal trajectory
from a single starting state to a single final state. A policy is
found (by some other means) that leads from the start state
to the final state. The value function is then calculated for the
states along the trajectory. The update rule for differential
dynamic programming then causes incremental changes in
the value and policy function so that the trajectory is slowly
changed to increase the total reinforcement. This algorithm
is similar to the backpropagation through time algorithm
(Nguyen and Widrow 1990), which first learns a model of
the system being controlled, then improves the policy
through gradient descent. Unfortunately, both of these algo-
rithms are susceptible to local optima; the final policy will
be such that it cannot be improved by an infinitesimal
change, but there may be an entirely different policy that is
much better.
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Instead of storing a value and a policy, a learning system
could instead store a value V(x) for each state and a change
in value AV(x,u) for each state-action pair. The change in
value AV(x,u) would represent the expected difference
between the value of state x and the value of the state
reached by performing action u in state x. This allows a more
incremental algorithm than value iteration, because it is
possible to avoid summing over all possible outcomes for a
given action in a given state, and it is no longer necessary to
know a model of the MDP. After performing action u in state
X causing a transition to state x', the change in value could
be updated according to update (14).

AV ()R, (xup > VX )—V (%) 14

After performing update (14), if AV(x,u) is the maximum
AV in state x, (i.e. action u is the current policy), then update
(15) should also be performed.

VE)R+yV(x) (15)

FIGS. 2a and 2b are diagrams showing a deterministic
MDP with eight states, two actions, and a time step At=1 for
which the updates (14) and (15) are not guaranteed to
converge. The name of each state and action is shown in
FIG. 2a. Action A yields an immediate reinforcement of 2,
and action B yields an immediate reinforcement of 1. The
initial value in each state, V(x), and initial change of value
for each state-action pair, AV(x,u), are shown in FIG. 2b.
The parameters fail to converge when the sequence of
updates

{2B, 1A, 24, 84, 8B, 1A. 6B,
4B, 3A, 4A, 24, 2B, 3A, 8B,
6B, 5A, 64, 4A, 4B, 5A, 7B,
8B, 7A, 84, 64, 6B, A, 4B}

is repeated infinitely often, where the numbers are states
and the letters are actions. After performing the first row of
updates, all parameters have shifted clockwise two states.
After performing all four rows of updates, all parameters
have been updated at least once, and all parameters have
returned to their initial values. The optimal policy is to
choose action A in every state. The worst policy is to choose
action B whenever possible. The initial parameters cause the
learning system to classify the worst policy as being optimal,
and this is still the case after the above sequence has been
repeated arbitrarily often. The worst policy continues to be
classified as optimal, even if the initial parameters are
perturbed slightly.

The idea of storing both the value function and the change
in value (or rate of change of value) was found to be useful
in one application by White and Sofge (1990, 1992), who
incorporated this idea into a larger system that also included
astored policy. However, the obvious algorithm for updating
such stored functions, updates (14) and (15), is not guaran-
teed to converge, even for a simple, deterministic MDP with
only eight states, two actions, and time step At=1. FIG. 2
shows an example for which this algorithm does not con-
verge. For this MDP, the optimal policy is action A in every
state. The worst policy is B whenever possible. The initial
AV function implies that the worst policy is considered to be
optimal by the learning system. Thus, not only does the
learning system fail to converge to the optimal policy, it also
periodically implies the worst possible policy. Also, the
parameter values shown in FIG. 2 constitute an attractor; if
the initial parameter values are changed slightly, then after
each sequence of updates they will move toward the param-
eter values in FIG. 2. Updates (14) and (15) change the
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parameters instantaneously. If there were an o above the
arrow, to represent a more gradual change, then the modified
algorithm would also fail to converge for this counterex-
ample. Each gradual update shown in the sequence in FIG.
2 would simply be repeated several times. An instantaneous
update can always be approximated by repeating a gradual
update. There are other modifications that could be imagined
for updates (14) and (15), but it is not apparent how to
modify them to ensure convergence to optimality. It is not
clear how a reinforcement learning system could be built
that stores only V and AV (or that stores V, AV, and a policy)
and that is guaranteed to converge to the optimal policy.

Another approach is to store a probability of choosing
each action in each state, rather than a single policy action
for each state. This approach has been used, for example, by
Gullapalli (1990). This approach requires that the controiler
choose actions according to the stored probabilities during
learning. The probabilities typically converge to a determin-
istic policy, so exploration by the learning system must
decrease over time. This prevents the issue of exploration
from being addressed separately from the issue of learning.
It would be useful to have a general algorithm that was
guaranteed to learn when observing any sequence of actions,
not just actions chosen according to specific probabilities.
For such an algorithm, the exploration mechanism could be
designed freely, without concern that it might prevent con-
vergence of the learning algorithm.

Q-learning is an algorithm that avoids the problems of the
above algorithms. It is incremental, direct (does not need a
model of the MDP), and guaranteed to converge, at least for
the discrete case with a finite number of states and actions.
Furthermore, it can learn from any sequence of experiences
in which every action is tried in every state infinitely often.
Instead of storing values and policies, Q-learning stores Q
values. For a given state x and action u, the optimal Q value,
Q" (x,u), is the expected total discounted reinforcement that
is received by starting in state x, performing action u on the
first time step, then performing optimal actions thereafter.
The maximum Q value in a state is the value of that state.
The action associated with the maximum Q value in a state
is the policy for that state. Initially, all Q values are set to
arbitrary numbers. After an action u is performed in state x,
the result is observed and the Q value is updated:

(16)
0wy <% Tylxu) +ymax QU
u

The equivalent of the Bellman equation for Q-learning is

a7
(1) = Ra(x,u) + ¥ Z Plu,x,x') max Q(x',u')
x o

The optimal Q function, Q"(x,u), is the unique solution to
equation (17). The policies implied by QF, policies that
always choose actions that maximize Q°, are optimal poli-
cies.

Update (16) does not require a model of the MDP, nor
does it contain any summations or integrals. The computa-
tional complexity of a single update is independent of the
number of states. If the Q values are stored in a lookup table,
then the complexity is linear in the number of actions, due
to the time that it takes to find the maximum. However, the
term being maximized is a stored function, not a calculated
expression. This suggests that if Q is stored in an appropriate
function approximation system, it might be possible to
reduce even this part of the update to a constant-time
algorithm. One algorithm that does this is described in Baird
(1992). Another method, wire fitting, is described in Baird
and Klopf (1993b). In both cases, the maximization of the
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function is performed incrementally during learning, rather
than requiring an exhaustive search for each update.
Q-learning therefore appears to have none of the disadvan-
tages of any of the algorithms described above, and the
computational complexity per update is constant. Reinforce-
ment learning systems based on discrete Q-learning are
described in Baird and Klopf (1993a), and Klopf, Morgan,
and Weaver (1993).

Q-learning requires relatively little computation per
update, but it is useful to consider how the number of
updates required scales with noise or with the duration of a
time step, At. An important consideration is the relationship
between Q values for the same state, and between Q values
for the same action. The Q values Q(x, u,) and Q(x, u,)
represent the long-term reinforcement received when start-
ing in state x and performing action u, or u, respectively,
followed by optimal actions thereafter. In a typical rein-
forcement learning problem with continuous states and
actions, it is frequently the case that performing one wrong
action in a long sequence of optimal actions will have little
effect on the total reinforcement. In such a case, Q(x, u,) and
Q(x, u,) will have relatively close values. On the other hand,
the values of widely separated states will typically not be
close to each other. Therefore Q(x,,u) and Q(x,,u) may
differ greatly for some choices of x, and x,. The policy
implied by a Q function is determined by the relative Q
values in a single state. If the Q function is stored in a
function approximation system with some error, the implied
policy will tend to be sensitive to that error. As the time step
duration At approaches zero, the penalty for one wrong
action in a sequence decreases, the Q values for different
actions in a given state become closer, and the implied
policy becomes even more sensitive to noise or function
approximation error. In the limit, for continuous time, the Q
function contains no information about the policy. There-
fore, Q-learning would be expected to learn slowly when the
time steps are of short duration, due to the sensitivity to
errors, and it is incapable of leamning in continuous time.
This problem is not a property of any particular function
approximation system; rather, it is inherent in the definition
of Q values.

THE ADVANTAGE UPDATING ALGORITHM

Reinforcement learning in continuous time is possible
through the use of advantage updating. The advantage
updating algorithm is a reinforcement leaming algorithm in
which two types of information are stored. For each state x,
the value V(x) is stored, representing the total discounted
return expected when starting in state x and performing
optimal actions. For each state x and action u, the advantage,
A(x,u), is stored, representing the degree to which the
expected total discounted reinforcement is increased by
performing action u (followed by optimal actions thereafter)
relative to the action currently considered best. After con-
vergence to optimality, the value function V*(x) represents
the true value of each state. The advantage function A™(x,u)
will be zero if u is the optimal action (because u confers no
advantage relative to itself) and A*(x,u) will be negative for
any suboptimal u (because a suboptimal action has a nega-
tive advantage relative to the best action). For a given action
u, the Q value Q" (x,u) represents the utility of that action, the
change in value AV"(x,u) represents the incremental utility
of that action, and the advantage A"(x,u) represents the
utility of that action relative to the optimal action. The
optimal advantage function A" can be defined in terms of the
optimal value function V™
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1

AX(xu)= AT

[ Ra(x) = VA + M 3 P x )V H(x) ] 18
X

The definition of an advantage includes a 1/At term to
ensure that, for small time step duration At, the advantages
will not all go to zero. Advantages are related to Q values by:

. a9
A¥*xu)= A [Q*(x,u)—mffx Q*(x,u')]
u

Both the value function and the advantage function are
needed during learning, but after convergence to optimality,
the policy can be extracted from the advantage function
alone. The optimal policy for state x is any u that maximizes
A"(x, u). The notation A,_, (x) is defined as:

(20
Amax(x) = max A(x,u)
u
If A, is zero in every state, then the advantage function
is said to be normalized. A,,,,, should eventually converge to
zero in every state. The update rules for advantage updating
in discrete time are as follows:

Advantage Updating
LEARN: perform action , in state x,

Radxsu) + YV(xgar) — Vix) @D

Al u) €2 Apen(x) +

At
V0r) €L V() + 1A, (50 ~ A, ot @)
NORMALIZE: pick an arbitrary state x and pick an action u
randomly with uniform probability
AG) <2 A1) — Amal) (23)

For the learning updates, the system performs action u, in
state x, and observes the reinforcement received, Ry, (x,,1,),
and the next state, X,, »,- The advaniage and value functions
are then updated according to updates (21) and (22). Update
(21) modifies the advantage function A(x,u). The maximum
advantage in state x prior to applying update (21) is A,
LX) - After applying update (21) the maximum is Apax,, (X).
It these are different, then update (22) changes the value
V(x) by a proportional amount. As o goes to zero, the
change in A,,,, goes to zero, but the change in A, in
update (22) is divided by o, so the value function will
continue to learn at a reasonable rate as o decreases.
Advantage updating can be applied to continuous-time sys-
tems by taking the limit as At goes to zero in updates (21),
(22), and (23). For (22) and (23), At can be replaced with
zero. Substituting equation (5) into update (21) and taking
the limit as At goes to zero yields:

A ) €2 Al + VG)lny + Vix) + rxut) @9

The learning updates, (21), (22), and (24), require inter-
action with the MDP or a model of the MDP, but the
normalizing update, (23), does not. Normalizing updates can
always be performed by evaluating and changing the stored
functions independent of the MDP. Normalization is done to
ensure that after convergence A,,, (x)=0 in every state. This
avoids the representation problem noted above for Q-learp-
ing, where the Q function differs greatly between states but
differs little between actions in the same state. Learning and
normalizing can be performed asynchronously. For
example, a system might perform a learning update once per
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time step, in states along a particular trajectory through state
space, and perform a normalizing update multiple times per
time step in states scattered randomly throughout the state
space. The advantage updating algorithm is referred to as
“advantage updating” rather than ‘“advantage learning”

14
useful, because the optimal policy can be calculated from it,
but it could be difficult to represent in a function approxi-
mation system. The learning updates (21) and (22) find value
and advantage functions that satisfy (27). The normalizing

5
because it includes both learning and normalizing updates. updates (22) and (23) ensure that the advantage function will
The equivalent of the Bellman equation for advantage be normalized, and so will satisfy (28) as well.
updating is a pair of simultaneous equations: . L.
The update rules for advantage updating have a significant
V00) + AGwwAr= RaGo) + EPUxx)V() (25) 10 property: there are time derivatives in the update tules, but
no gradients or partial derivatives. At time t, it is necessary
max A(ou)=0 @9 to know A, (t) and the value and rate of change of V()
u while performing the current action. It is not necessary to
The unique solution to this set of equations is the optimal 15 know the partial derivative of V or A with respect to state or
value and advantage functions V'(x) and A"(x.u). This can action. Nor is it necessary to know the partial derivative of
be seen by considering an arbitrary state x and the action . .
L d . next state with respect to current state or action. Only a few
u,,,. that maximizes the advantage in that state. For a given .
state, if (25) is satisfied, then the action that maximizes A of the recent values of V need to be known in order to
will also maximize the right side of (25). If the advantage 20 calculate the time derivative; there is no need for models of
function satisfies (26), then A(x.,,,,,)=0. Equation (25) then the system being controlled. Existing methods for solving
reduces to equation (12), which is the Bellman equation. The continuous-time optimization problems, such as value itera-
only solution to this equation is V=V, so V' is the unique tion or differential dvnamic proerammine. require that mod-
solution to equations (25) and (26). Given that V=V~ ¥ prog g,. q o
equation (25) can be solved for A, yielding equation (18), so 25 €I be known or leamed, and that partial derivatives of
the unique solution to the set of equations (25) and (26) is models be calculated. For a stochastic system controlled by
the pair of functions A” and V", a continuum of actions, previous methods also require
The pair of equations (25) and (26) has the same unique maximizing over a set of one integral for each action.
solution as the pair (27) and (28) , because equation (28) Advantage updating does not require the calculation of an
ensures that A, .(x) is zero in every state. 30 . . . R
integral during each update operation, and maximization is
V(@) + (A1) ~ Anar ()AL = Ras( ) + 1 Z Plat 5,2 )VIx) @7n only done over stored values. For this reason, advantage
* updating appears useful for controlling stochastic systems,
A =0 (28) even if a model is already known with perfect accuracy. If
max X)) = . . .
u 3 the model is known, then the system can learn by interacting
If, in state x, a large constant were added to each advan- with the model as in the Dyna .systen} (Sutton, 1990a). Table
tage A“(x,u) and to the value V'(x), then the resulting 1 compares advantage updating with several other algo-
advantage and value functions would still satisfy equation rithms.
Information stored for Converge Cont.
state x, action u Update rules Direct  to t* time
R-learning l}’l(x, u) P E B R —p + max K' yes no no
If following the policy then:
p %a R+max o' -maxR
Value iteration V(x) v < o R + ¥ max V' no yes yes
Change in value Vx) AV o " yes no yes
AV B) <= R+V-V)A
If following the policy then:
v R +yAV'
Q-learning Q(x, u) Q f o R+ ¥ max Q yes yes no
Advantage Vix) = o A R " yes yes yes
updating A(x, u) maxct (R o+ V= V)AL

v

V + AApardo.

For a randomly, uniformly chosen action:

A &L AApm

(27). However, the advantage function would not satisfy
equation (28), and so would be referred to as an unnormal-
ized advantage function. Such a function would still be

65

Table 1. Comparison of several algorithms applicable to
reinforcement learning problems.
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In Table 1, equations are given in a simplified form, where
primed letters represent information associated with the next
state and unprimed letters represent information associated
with the current state. See the adjacent text for a more

detailed form of the equations. The fourth Table 1 column 5

gives the equivalent of the Bellman equation; the unigue
solution to this equation or set of equations is the optimal
function or functions that should be learned. R-learning is
not guaranteed to learn to reject suboptimal policies. Value
iteration is not direct; it requires a model to be known or
learned, and it requires the calculation of the maximum of an
infinite set of integrals to perform one update. The algo-
rithms described in the text that are based on storing a
change in value are not guaranteed to converge, even for a
deterministic MDP with only eight states. Q-learning and
R-leamning do not work in continuous time, and are sensitive
to function-approximation errors when the time step is
small. Advantage updating is direct, is guaranteed to con-
verge for an MDP with finite states and actions, and is
appropriate for continuous-time systems or systems with
small time steps.

A LINEAR QUADRATIC REGULATOR
PROBLEM

Linear Quadratic Regulator (LQR) problems are com-
monly used as test beds for control systems, and are useful
benchmarks for reinforcement learning systems (Bradike,
1993). The following linear quadratic regulator (LQR) con-
trol problem can serve as a benchmark for comparing
Q-learning to advantage updating in the presence of noise or
small time steps. At a given time t, the state of the system
being controlled is the real value x,. The controller chooses
a control action u, which is also a real value. The dynamics
of the system are:

x=u, (29)

The rate of reinforcement to the learning system, 1(x,,u,),

is
r{x u=—x2—u? (30)

Given some positive discount factor y<1, the goal is to

maximize the total discounted reinforcement:

- @1
_[ (e m)ds
0

A discrete-time controller can change its output every At
seconds, and its output is constant between changes. The
discounted reinforcement received during a single time step
is

1+ At t+ A G2
R = j Y, ud)dt = J V(e + Tur)? ~ wydn
t !

and the total reinforcement to be maximized is

2 P Ratriaiin) @3)

Given this control problem, it is possible to calculate the
optimal policy ©t"(x), value function V*(x), Q value function
Q' (x,u), and advantage function A"(x,u). These functions
are linear or quadratic for all At and y=1.

T ()=—kyx (34)

V(= @35)
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Q"6 )=y Atk ey S22 Atk eyxu—Athgp? (36)

AT )=k xtu)? (€n)
The constants k; are positive for all nonnegative values of

At and y=1. For At=0 and =1, all k=1. Appendix B gives

the general formula for each k; as a function of At and v.

Q-LEARNING WITH SMALL TIME STEPS

FIG. 3 is a graph showing the optimal trajectory for the
linear quadratic regulator (LQR) problem, starting at x,=1,
for continuous time (solid line) and for discrete time with
time steps of duration 5 (dashed line). In continuous time,
the optimal speed is high when x=1, and the speed decreases
as x approaches zero. In discrete time, the optimal speed is
lower initially, to decrease the amount of overshoot on the
first time step.

FIG. 3 illustrates the optimal trajectories for At=5 and
At=0 (continuous time) with y=0.9. At the first instant, the
optimal policy for continuous time is to move at high speed,
but the optimal policy for the discrete time system requires
a lower speed in order to lesson the degree to which it will
overshoot during the first time step. As the time step duration
decreases from 5 to 0, the discrete-time trajectory converges
to the continuous-time trajectory. The optimal value function
and Q function are also affected by At. FIG. 4 shows the
value functions, policy functions, and Q functions for At=5,
At=1, and At=0.0001.

A set of diagrams showing the LQR problem optimal
value function V™ appears in FIG. 44, FIG. 4b and FIG. 4¢c
of the drawings. A set of diagrams showing the LQR
problem policy * function appears in FIG. 44, FIG. 4e, and
FIG. 4f of the drawings. A set of diagrams showing the LQR
problem Q function Q* appears in FIG. 4g, FIG. 44 and FIG.
4i of the drawings. Functions are shown for time steps of
duration 5 (left column or FIG. 4a, FIG. 44 and 4g), duration
1 (middle column or FIG. 4b, FIG. 4c, and FIG. 4k) and
duration 0.0001 (right column or FIG. 4¢, FIG. 4f and FIG.
4i). In all cases, y=0.9.

As the duration of the time step approaches zero, the
optimal policy and value functions change slightly,
approaching a linear and quadratic function respectively,
with coefficients of 1.0. The change in the optimal Q
function is more dramatic, however. This is visible in both
the equations and the figures. If At is set 1o zero in equation
(36), the Q function ceases to be a function of u; it is only
a function of x. This effect is also clear in the figures. For a
time step duration of 5, it is obvious that for each possible
state there is a unique action that yields the maximum Q
value. This ridge of best Q values indicates the optimal
policy. If the time step duration is decreased to 1, the Q
function shifts so that the optimal policy is somewhat harder
to see. It is still the case, though, that the maximum Q value
in each state represents the optimal action in that state. As
the time step approaches zero duration (continuous time), it
becomes increasingly difficult to exiract the policy from the
Q function. In the last Q function graph in FIG. 4h, for each
state, the Q function is almost constant over all the actions.
There is a very small bump in the Q function corresponding
to the optimal action in each state, but it is too small to be
visible in a graph of the function, and it would be very
difficult to leam, for a general function approximation
system. Small errors in function approximation can cause
large errors in the policy implied by the Q function. Q-learn-
ing is not practical for control when the time step duration
is small, and Q-learning is theoretically impossible in a
continuous-time system.
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This difficulty is not specific to this particular control
problem. A Q value is defined as the expected total dis-
counted return if a given action is performed for only a
single time step, followed by optimal actions thereafter.
Unfortunately, in a typical control system, the total dis-
counted reinforcement over an entire trajectory is rarely
affected much by a bad control action on a single time step.
Thus the Q function will be almost equal for all the actions
in a given state, while exhibiting large differences between
different states. This is why Q-learning is not well suited to
problems with small time steps.

FIG. 5a is a diagram showing the optimal advantage
function A™ for the LQR problem for time steps of duration
5. FIG. 5b is a diagram showing the optimal advantage
function A™ for the LQR problem for time steps of duration
1. FIG. 5c is a diagram showing the optimal advantage
function A" for the LQR problem for time steps of duration
0.001. In all cases, v=0.9. These diagrams show the advan-
tage function for the same parameter values used in FIG. 4.

For large time step durations, such as At=5, the advantage
and Q functions are almost identical except for scale. Both
clearly represent the policy. For smaller time steps, the
advantage function continues to clearly represent the policy
and, even for continuous time, the optimal action in each
state can be read easily from the graph. This suggests that the
advantage updating algorithm, which is based upon storing
values and advantages, might be preferable to Q-learning.

SIMULATION RESULTS

Advantage updating and Q-learning were compared on
the LQR problem described in the previous section. In the
simulations, the V function was approximated by the expres-
sion w,x?, and the A and Q functions were approximated by
w,x*+wyxut+w,u”, All weights, w,, were initialized to ran-
dom values between +10~*, and were updated by simple
gradient descent. Each Q function was initialized with the
same weights as the corresponding advantage function to
ensure a fair comparison. The control action chosen by the
learning system was constrained to lie in the range (—1,1).
When calculating the maximum A or Q value in a given
state, only actions in this range were considered. On each
time step, a state was chosen randomly from the interval
(-1,1). With probability 0.5, an action was also chosen
randomly and uniformly from that interval. With probability
0.5, the learning system chose an action according to its
current policy. The advantage updating system also per-
formed one normalization step on each time step in a state
chosen randomly and uniformly from (—1,1). A set of 100
Q-learning systems and 100 advantage updating systems
were allowed to run in parallel, all initialized to different
random values, and all exploring with different random
states and actions. At any given time, the policy of each
system was a linear function. The absolute value of the
difference between the constant in the current policy and the
constant in the optimal policy was calculated for each of the
200 learning systems. For Q-learning and advantage updat-
ing, the solution was said to have been learned when the
mean absolute error for the 100 learning systems running in
parallel fell below 0.001. FIG. 6 shows the number of time
steps required for learning when various amounts of noise
were added to the reinforcement signal. FIG. 7 shows the
number of time steps required for learning with various time
step durations.

FIG. 6 is a graph showing time steps required for learning
as a function of noise. For a noise level of n, uniform,
random noise from the range (-n107*,n10™) was added to
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the reinforcement on each time step. For each noise level, Q
learning (dotted line) used the learning rate that was optimal
to two significant digits. Advantage updating (solid line)
used learning rates with one significant digit, which were not
exhaustively optimized, yet it tends to require less time than
Q learning to learn the correct policy to three decimal places.
For zero noise, advantage updating is only slightly faster.
For a noise level of 13, advantage updating is more than four
times faster than Q learning.

FIG. 7 is a graph showing time steps required for learning
as a function of time step duration, At. For each duration, Q
learning (dotted line) used the learning rate that was optimal
to two significant digits. Advantage updating (solid line)
used learning rates with one significant digit, which were not
exhaustively optimized. Advantage updating requires an
approximately constant number of time steps to learn the
correct policy to three decimal places, independent of At.
For large At, advantage updating is slightly faster than
Q-learning to learn the policy to three decimal places. For
small At, advantage updating learns approximately 5 orders
of magnitude more quickly than Q leamning. As At
approaches zero, the training required by Q learning appears
to grow without bound. Due to the time required for the
simulations, the last two data points for Q learning were
found with averages over 10 systems rather than 100.

Table 2 shown below shows the learning rates used for
each of the three functions for both of the algorithms for
various noise levels. In Table 2, there are 100 identical
learning systems learning in parallel, with different initial
random weights and different random actions. The Table 2
system is defined to have learned the policy when the mean
absolute value of the error in the policy constant for the 100
systems is less than 0.001. The leaming rates for Q learning
are optimal to two significant digits. The learning rates for
advantage updating have only a single significant digit, and
have not been completely optimized.

Table 3 shows learning rates for various time step dura-
tions. Table 3 also represents 100 identical learning systems
learning in parallel, with different initial random weights and
different random actions. The system is defined to have
learned the policy when the mean absolute value of the error
in the policy constant for the 100 systems is less than 0.001.
Results marked with “*” represent averages over 10 systems
rather than 100. The learning rates for Q learning are optimal
to two significant digits. The learning rates for advantage
updating have only a single significant digit, and have not
been completely optimized.

For the simulations described in Tables 2 and 3, normal-
ization was done once after each learning update, and both
types of update used the same learning rate. Advantage
updating could be optimized by changing the number of
normalizing updates performed per learning update, but this
was not done here. One learning update and one normalizing
update were performed on each time step. To insure a fair
comparison for the two learning algorithms, the learing rate
for Q-learning was optimized for each simulation. Rates
were found by exhaustive search that were optimal to two
significant digits. The rates for advantage updating had only
a single significant digit, and were not exhaustively opti-
mized. The rates used were sufficient to demonstrate that
advantage updating learned faster than Q-leaming in every
simulation.

Advantage updating appears more resistant to noise than
Q-learning, with learning times that are shorier by a factor
of up to seven. This may be due to the fact that noise
introduces errors into the stored function, and the policy for
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advantage updating is less sensitive to errors in the stored
functions than for Q-leamning. All of FIG. 6, and the leftmost
points of FIG. 7, represent simulations with large time steps.
When the time step duration is small, the difference between
the two algorithms is more dramatic. In FIG. 7, as the time
step duration At approaches zero (continuous time), advan-
tage updating is able to solve the LQR problem in a constant
216 time steps. Q-leaming, however, requires approximately
10/At time steps. Simulation showed a speed increase for
advantage updating by a factor of over 160,000. Smaller
time steps might have resulted in a larger factor, but Q-learn-
ing would have learned too slowly for the simulations to be
practical. Even for a fairly large time step of At=0.03,
advantage updating learned twice as quickly as Q-learning.
When A=0.03, the optimal policy reduces x by 90% in 81
time steps. This suggests that if a controller updates its
outputs 50 times per second, then advantage updating will
learn significantly faster than Q-learning for operations that
require at least 2 seconds (100 time steps) to perform.
Further research is necessary to determine whether this is
true for systems other than a simple LQR problem.

TABLE 2

Learning rate constants and number of time steps
required for learning, in the case of Q learning and
advantage updating, with At = 0.1, and varying levels of noise.

noise oq o B ) tq ta

0 14 1.0 03 5 239 214

1 1.4 1.0 3 5 272 222

2 0.74 6 3 3 415 286

3 0.44 5 3 3 660 375

4 0.26 4 3 4 1,128 445

5 0.17 3 2 3 1,688 561

6 0.11 2 4 1 2,402 55

7 0.088 2 2 2 3,250 765

8 0.073 .1 1 .07 3,441 1,335

9 0.054 1 .09 .05 4,668 1,578

10 0.050 1 1 .06 4,880 1,761

1 0.046 .08 .06 .06 5,506 1,761

12 0.030 .06 1 1 8,725 1,832

13 0.028 .06 1 1 8,863 1,845

14 0.022 .06 1 .1 11,642 1,850

15 0.018 .06 1 1 13,131 1,890

16 0.018 .06 1 1 13,183 1,902

TABLE 3
Optimal learning rate constants, a, and number of
time steps required for learning, t, for Q-learning
and advantage updating, with no noise, and varying
time step durations, At.

_t Og o B ® tQ ta
1E0 0.44 1 .6 4 382 196
3E-1 1.0 1 4 .8 195 190
1E-1 1.4 1 3 .5 239 214
3E-2 1.5 9 3 5 459 216
1E-2 1.6 .9 3 5 1,003 216
3E-3 1.6 9 3 5 2,870 216
1E-3 1.5 9 3 .5 9,032 216
3E-4 14 9 3 .5 32,117 216
1E-4 14 9 3 5 96,764 216
3E-5 1.2 9 3 5 372,995 216
1E-5 1.3 .9 3 5 1,032,482 216
3E-6 1.2 9 3 5 3,715,221 216
1E-6 1.2 9 3 .5 *10,524,463 216
3E-7 12 9 3 5 *34,678,545 216
1E-7 9 3 5 216
3E-8 9 3 5 216
1E-8 9 3 .5 216
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CONVERGENCE OF ADVANTAGE UPDATING

There are three types of convergence that are desirable for
an algorithm such as advantage updating. First, performing
only learning updates should ensure that the policy implied
by the advantage function should converge to optimality.
Second, performing only normalizing updates should ensure
that A(x,u) becomes normalized, that is, A,,,,(x) converges
to zero in every state. Third, the full advantage updating
algorithm (performing both types of updates) should ensure
that V(x), A(x,u), A,,..(x) and the policy implied by A(x,u)
all converge to optimality. Theorem 1 and theorem 2,
reproduced below, show the first two types of convergence.
The third type of convergence has not yet been shown to be
false, but will require further analysis.

Theorem 1. A sequence of updates ensures that, with
probability one, V(x) converges to V"(x) and the value of the
policy implied by A(x,u) converges to optimality with
probability one if:

(1) There are a finite number of possible states and
actions.

(2) Each state receives an infinite number of learning
updates and a finite number (possibly zero) of normalizing
updates.

3

3 axxu)=ccand T o,2(xu)
=1 n=1

is finite, where a,(x,u) is the learning rate used for the nth
time the learning updates are applied to action u in state x.

(4) Vx,udn, such that Vi>n, B, (x,u)=0.,(x,u)At

Proof:

If the above conditions are satisfied, then at some point in
time during learning, B=otAt and all future updates are
learning updates (no normalizing updates). Define the func-
tion Q to be the left side of equation (27), so Q(x,u)=V(x)+
(A(xu)-A,, . (x)AL. The learning updates in advantage
updating change the quantity Q(x,u) in the same way that
Q-learning does when B=otAt. Therefore, Q will converge to
Q" with probability one, which ensures that the value of the
policy implied by the Q function will converge to optimality
with probability one (Watkins 1989, Watkins and Dayan,
1992). Note.that according to this definition of Q, the
maximum Q value in state x always equals V(x). Therefore,
if Q converges to Q, then V must converge to V*. In a given
state, the action that maximizes Q will also be the action that
maximizes A. The value of the policy implied by the Q
function converges to optimality with probability one, there-
fore the value of the policy implied by the A function must
also converge to optimality. O

Theorem 2. A sequence of updates ensures that A, (x)
converges to zero with probability one in each state (the
advantage function goes into normal form) if:

(1) There are a finite number of possible actions.

(2) Each state receives an infinite number of normalizing
updates and a finite number (possibly zero) of learning
updates.

(3) The learning rate a for each state is constant.

Proof:

Define the stored information after applying all the learn-
ing updates as the “initial” parameter values, so the learning
updates can be ignored. Normalizing updates in one state are
not affected by other states, so it is sufficient to consider a
single state. First, consider the case where A, (x) is ini-
tially positive. Define S to be the sum of the positive
advantages in state x. Note that a normalizing update cannot
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change the sign of A, (%), and cannot increase any advan-
tage in state x. If a normalizing update is performed in state
x on one of the positive advantages, then either S will be
decremented by A,,,.(X), or else one of the positive advan-
tages will become nonpositive and will remain nonpositive
after all future updates. If there are n possible actions, then
the latter can happen at most n—1 times. The maximum of a
set of positive numbers is greater than or equal to the
average, s0 A,,,.(x)ZS/n. Therefore, decreasing S by
Amax(x) results in S being decreased by at least S/n. State
x will always have at least one positive advantage, so each
update has a probability of at least 1/n that it will update a
positive advantage. An infinite number of updates will result
in an infinite number of updates to positive advantages (with
probability one), which results in S being decremented by at
least S/n an infinite number of times, which causes S to
converge to zero with probability one. The second case is if
A,,.(x) is initially negative. In that case, each update has a
probability of at least 1/n that A, , (x) will be increased by
at least —A,,,,.(x). With probability one, this will happen an
infinite number of times, ensuring convergence with prob-
ability one. O

Theorem 1 indicates that the learning updates alone are
sufficient to learn the optimal policy, when the advantage
function is stored in a lookup table. However, the advantage
function may be unnormalized, with large values in one
state, and small values in another state. An unnormalized
advantage function can be as difficuit for a function approxi-
mation system to represent as a Q function, for similar
reasons. Theorem 2 indicates that the normalizing update
does tend to put the advantage function into normal form.
Therefore a sequence containing both types of updates may
converge to an advantage function that implies an optimal
policy, and also is sufficiently normalized to be learned
easily by a function approximation system. It appears pos-
sible to prove convergence for the full advantage updating
algorithm, where both learning and normalizing updates are
performed infinitely often for every state-action pair. A proof
of this convergence result, based on the results of Jaakkola,
Jordan, and Singh (1993), will appear in a forthcoming
paper.

IMPLEMENTATION ISSUES

Many optimal control problems occurring in practice have
continuous, high-dimensional state and action vectors. This
suggests that the V and A functions should be represented
with general function approximation systems that learn from
examples, rather than using lookup tables. Possible systems
might include a multilayer perceptron, a radial basis func-
tion network, a CMAC, or a memory-based learning system
using k-nearest-neighbor interpolation. Such systems can be
trained by giving examples of the value of a function for
various inputs.

Continuous-time advantage updating requires knowledge
of the rate of change of value, V(x,). If the learning system
is constantly calculating the value of V as the state changes,
then simple filters and techniques from adaptive control

theory can be used to estimate V() ata particular time t. In
fact, the filter can even be noncausal, using the values of V
at times later than time t as well as at times earlier than time
t in the calculation of V(x,). It is also acceptable for the

estimate of V(t) to be somewhat noisy. As long as the noise
has zero mean and bounded variance, this should not prevent
convergence of the advantage updating algorithm to the
correct policy, although noise would be expected to slow the
convergence.
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One additional issue arises when the action vector is
continuous. All forms of dynamic programming require the
calculation on each time step of a maximum (or minimum,
or minimax saddlepoint). In Q-learning, for an update of a
single parameter, it is necessary to find the maximum Q
value in a particular state. Value iteration and policy iteration
require the calculation of a sum or integral over all possible
state transitions for a given action. This calculation must be
repeated for each possible action in a given state, and the
maximum of the calculated values must be found in order to
update a single parameter. In advantage updating, for a
single application of step 1 or step 2 above, the maximum A
value in a given state must be found. If the state and action
vectors are continuous, and the functions are stored (for
example) in a single hidden layer sigmoidal network, then it
is difficult to find the action that maximizes the output for a
given state. There are three approaches to finding this
maximum.

The first approach is to find maximizing action through
traditional search techniques, treating the stored function as
an unknown function to be sampled repeatedly while trying
to find the maximum. This can be computationally intensive
and can be subject to problems with local maxima, espe-
cially in high-dimensional action spaces.

The second approach exploits the ability of advantage
updating to work with small time steps. For example, an
MDP might have a time-step duration of At, a state vector x,
and a scalar action u which is a real number between zero
and one. An almost-equivalent MDP is one with a time-step
duration of At/100, a state vector (x,u), and only two
possible actions: increase u by Yoo, or decrease u by Vioo.
The latter MDP is almost equivalent to the former; given an
optimal policy for the latter MDP, an approximately optimal
action for state x in the former MDP can be found through
at most 100 evaluations of the policy for the latter MDP. In
the limit, using large factors instead of 100, this approach
reduces the problem of continuous actions to an equivalent
problem with discrete actions. The algorithm for this maxi-
mization method in the limit is given in Baird (1992).

The third approach to finding maxima of learned func-
tions is the wire fitting approach, described in Baird and
Klopf (1993b). It is possible to take any function approxi-
mation system and embed it in a larger system which makes
trivial the problem of finding the global maximum for each
state. The maximum of the function in a given state can be
found in constant time. This approach appears general, and
less computationally intensive than the one in Baird (1992),
and has been shown to work well on a simple cart-pole
control problem.

CONCLUSION

Advantage updating is shown to learn slightly faster than
Q-learning for problems with large time steps and no noise,
and far more quickly for problems with small time steps or
noise. Advantage updating works in continuous time, which
Q-learning cannot do. Advantage updating also has better
convergence properties than R-learning, differential
dynamic programming, or algorithms based on stored
change in value or stored policies. Complete learning sys-
tems for continuous states, actions, and time can be built
using this algorithm with existing function approximation
systems, function maximization systems, and filter systems.
Unlike differential dynamic programming or value iteration,
it is possible for advantage updating to learn without a
model. If a model is known or learned, advantage updating
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may be combined with the model as in Dyna (Sutton,
1990a). If the system being controlled is stochastic, this
direct method combined with the model could be more
efficient than an indirect method combined with the model.
This is due to the fact that some indirect methods require
maximization over infinite sets of integrals in order to
accomplish a single update, whereas advantage updating can
accomplish the calculation of both the integrals and the
maximization incrementally. Future work will include
analysis of additional convergence issues, and application of
advantage updating to more difficult problems.
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APPENDIX A
NOTATION
X, State at time t
u, Control action at time t. In discrete-time control,

action is constant throughout a time step.

TadXe Uar) Rate of reinforcement at time t while performing
action u, in state x,.

Ry (x, w) Total discounted reinforcement during a single
time step starting in state x with constant
action u. R is the integral of r as time varies
over a single time step.

R(x, u) Information stored by R-learning for the
state-action pair (x, u).

T*(x) Optimal control action to perform in state x.

V*(x) Total discounted reinforcement over all time if
starting in state x then acting optimally.

Q*(x, u) Total discounted reinforcement over all time if
starting in state x, doing u, then acting optimally.

AV*(x, u) Expected value of V*(x') — V*(x), where x' is

the state reached by performing action u in

10

20

25

30

35

24

APPENDIX A-continued

NOTATION

in state x.

Amount by which action u is better than the
optimal action in maximizing total discounted
reinforcement over all time. A* is zero for
optimal actions, negative for all other actions.
Learning system’s estimates of 7%, V¥, Q¥%, A*,
and AV*,

A*(x, u)

T, V, Q A, AV

All parameter updates are represented by arrows. When a

parameter is updated during learning, the notation
WeK (3%

represents the operation of instantaneously changing the
parameter W so that its new value is K, whereas

W<k

represents a partial movement of the value of W toward
K, which is equivalent to

@9

W, (1-00W ;0K 40)

where the learning rate o is a small positive number.

It is understood that certain modifications to the invention
as described may be made, as might occur to one with skill
in the field of the invention, within the scope of the appended
claims. Therefore, all embodiments contemplated hereunder
which achieve the objects of the present invention have not
been shown in complete detail. Other embodiments may be
developed without departing from the scope of the appended
claims.
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TELLLETITIELLLI T ITEE 0870770800077 E7 702000 E77 7 i1 007707 77771171707777
// Advantage Updating & Q-Learning Comparison on a Linear Quadratic Regulator//
// Capt. Leemon Baird, Wright Laboratory, WPAFEB, OH

/7 bairdlcewl.wpafb.af.mil
// This program runs several simulations of both Q-learning and advantage
// updating on a simple linear quadratic regulator (LQOR) problem.

// The names of weights start with "w".

7/ Q(x,u) =wgxx*x"2 + wgxu*x*u + wquu*u®2

// A(x,u)=waxx*x" 2 + waxu*x*u + wauu*ru’2

/7 Vi{x,u)=wav*x"2

// The optimal weights: wgxx=-k2-k3*kl1*kl*dt waxu=-2*k3*kl*dt wquu=-k3*dt

// wavs

waxx= (-k3*k1l*kl)
// Each line printed by the program has the time step duration {(dt), number
// of system simulated in parallel (nsys), learning rate for learning A, V,
// normalizing A, and learning Q (ah,aV,aW,aQ), noise (N}, and number of
// timesteps required for advantage updating and Q-learning to learn the
// policy with mean absolute error less than 0.001

2 Nov 893

waxu=-2%k3xkl

(tA, tQ) .

The functions of the weights are:

wauu=-k3

/7
//
//
//
//
r/
//
//
1/
//
//
//
I
//

7/
LIEITILTTIPIIL IR T ET I 0007001 E00T 7100000700070 0170070070177070770711707110077

#include "stdio.h"

#include "math.h"

#define gamma
#define AU_sim
#define Q sim

#define first line 17

#define last_line

#define mxs
#define dt
#define nsys
#define alphaa
#define alphav
#define alphaw
#define alphaqg
#define noise
#define R{x,u)

// do action u in state x, discounted reinforcement for one time step=R(x,u).

void init w
void

void

void avg_av
void avg_gq
double rnd

long ¢, t,

unsigned long rnd_seed=1;

#include
0.9 /*

1 /*

o] /*

/*

17426 /*
100 /*
{klcl (0]) /*
(klc) [2]) /*
(klcl [2]) /*
(klec] [3])) /*
(klcl [4]) /*
(klc] [5]) /*

(kfcl [6])

/*

"stdlib.h"

discount factor

1 to simulate advantage updating,
1 to simulate Q-learning,
first simulation is this row of the array k[][]
last simulation is this row of array kl] (]

max number of systems that can learn in parallel

time step duration
number of systems to simulate in parallel

learning rate for
learning rate for
learning rate for
learning rate for

amount of random noise to add to reinforcement

learning A
learning V
normalizing A
learning Q

((2*gdl*u*u+2*u*ln* (u*dt*gd-gdi*x) + \
In2* ((gdl-dt*dtc*gd) *u*u+gdl*x*x-2*dt*gd*u*x) ) /1n3)

(void) ;

update_av(void) ;
update_q (void);

(void) ;
{void) ;

(void) ;

1/
!/
1/
//
1/

1/

initialize the weights
perform one step of advantage updating

perform one step

find the mean |error| for A and V weights
find the mean |error| for Q weights

return a random number in the range [-1,1]}
double waxx[mxs],waxu[mxs],wauulmxs],wav[mxs] , wagxx {mxs] , wgxu [mxs] , wquu [mxs] ;
double kl1,k2,k3,g9d,gdl,gd2,1n,1n2,1n3; //IEEE standard 80-bit floating point
s, donea, doneg;
char back[13]={8,8,8,8,8,8,8,8,8,8,8,8,0}; //12 backspaces used for printing
// should be a 32-bit unsigned integer

of Q-learning

0 otherwise
0 otherwise

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

double k({1001[7] = { //this defines the parameters for 61 different simulations

// dt nsys

aA av aw

aQ noise ta

>

tQ
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100, 1.0, .3, .5, 1.4, o, // 214 239 // 0
100, 1.0, .3, .5, 1.4, 1, // 222 272 // 1
100, .6, .3, .3, .74, 2, // 286 415 /] 2
100, .5, .3, .3, 44, 3, // 37% 660 // 3
100, .4, .3, .4, .26, 4, [/ 445 1,128 // 4
100, .3, .2, .3, .17, 5, // 561 1,688 // 5
100, .2, .4, .1, .11, 6, // 1755 2,402 /] 6
100, .2, .2, .2, .ose, 7, // 1765 3,250 /7 7
100, .1, .1, .07, .073, 8, // 1335 3,441 // 8
100, .1, .09,.05, .054, 9, // 1578 4,668 // 9
100, .1, .1, .06, .050, 10, // 1761 4,880 //10
100, 08,.06,.06, .046, 11, // 1761 5,506 //11
100, .08,.3, .4, .030, 12, // 1643 # 8,725 //12
100, .07,.3, .3, .028, 13, // 1736 # 8,863 //13
100, 07,.1, .3, .022, 14, // 1825 # 11,642 //14
100, .06,.2, .1, .01i8, 15, // 1880 # 13,131 /715
100, .06,.2, .1, .018, 16, // 1881 # 13,183 //16
100, .10,.2, .3, .028, 11, // 1736 8,863 //13
100, .10,.2, .4, .028, 11, // 1736 8,B63 //13
100, .10,.2, .5, .028, 11, // 1736 8,863 /713
100, .10,.3, .3, .o028, 11, // 1738 8,863 //13
100, .10,.3, .4, .028, 11, // 1738 8,863 //13
100, 10,.3, .5, .028, 11, // 1736 8,863 //13
100, .10, .4, .3, .028, 11, // 1736 8,863 /713
100, i0,.4, .4, .028, 11, // 1736 8,863 //13
100, .10, .4, .5, .0p28, 11, // 1736 8,863 //13
100, .08,.2, .3, .028, 11, // 1736 8,863 //13
100, .08,.2, .4, .028, 11, // 1736 8,863 //13
100, 08,.2, .5, .028, 11, // 1736 8,863 //13
100, .08,.3, .3, .028, 11, // 1736 8,863 //13
100, .08,.3, .4, .028, 11, // 1736 8,863 //13
100, .08,.3, .5, .028, 11, // 1736 8,863 //13
100, .08,.4, .3, .028, 11, // 1736 8,863 //13
100, .08,.4, .4, .028, 11, // 1736 8,863 //13
100, .08,.4, .5, .028, 11, // 1736 8,863 //13
100, .08,.2, .3, .028, 11, // 1736 8,863 //13
100, .08,.2, .4, .028, 11, // 1736 8,863 //13
100, .09,.2, .5, .028, 11, // 1736 8,863 //13
100, .09,.3, .3, .o028, 11, // 1736 8,863 //13
100, .09,.3, .4, .028, 11, // 1736 8,863 //13
100, .09,.3, .5, .o028, 11, // 1736 8,863 //13
100, .08,.4, .3, .028, 11, // 1736 8,863 //13
100, .09, .4, .4, .o028, 11, // 1736 8,863 //13
100, .09,.4, .5, .028, 11, // 1736 8,863 //13
100, 1.0, .7, .4, .44, 0, // 194 # 382 //17
100, 1.0, .4, .8, 1.0, 0, // 150 # 195 //18
100, 1.0, .3, .5, 1.4, 0, // 214 # 2389 //18
100, 9, .3, .5, 1.5, 0, // 216 & 459 //20
100, 9, .3, .5, 1.6, o, // 216 # 1,003 //21
100, 5, .3, .7, 1.6, 0, // 214 # 2,870 /722
100, s, .3, .7, 1.5, o, // 215 # 9,032 //23
100, .9, .3, .7, 1.4, o, // 214 # 32,117 //24
100, 9, .3, .7, 1.4, o, // 214 # 96,764 //25

[lo1]



5,608,843

29 30

3e-5, 100, 9, .3, .7, 1.2, 0, // 214 # 372,935 //26
le-5, 100, 9, .3, .7, 1.3, 0, // 214 #1,032,482 /727
3e-6, 100, .9, .3, .7, 1.2, 0, // 214 #3,715,221 //28
le-6, 10, .9, .3, .7, 1.2, 0, // 214#10,524,463 (nsys=100 for ta) //29
3e-7, 10, 9, .3, .7, 1.2, 0, // 214#34,678,545 (nsys=100 for tA) //30
le-7, 100, 9, .3, .7, a, 0, // 214 # //31
3e-8, 100, 9, .3, .7, 0, o, // 214 % //32
le-8, 100, 9, .3, .7, 0, 0};// 214 # //33
main() {
printf("\n dt nsys ak av aw aQ N A tQ\nY) ;
for (e=first line;c<=last_line;c++) { //do several lines from the table

init w(}; //init each parallel system with different weights

rnd_seed=7; //reseed the random number generator

if (!AU_sim) printf (® ") deonea=!AU_sim; doneg=!Q sim;

for (t=0;!donea;t++) { //do updates for nsys adv. upd. systems in parallel

avg_av(};

for (s=0;s<nsys;s++) update av();
}
rnd_seed=7; //reseed again so Q sim is the same when not doing the AU sim.
for (t=0;!doneq;t++) { //do updates for nsys Q-learners running in parallel
avg_ql);
for (s=0;s<nsys;s++) update q{};
}
}
return (0} ;

}

void init w(void){ //initialize all the weights, print out the parameters

double ss,1n22,eps=1e-10;

donea=doneg=0;

gd=pow (gamma, dt) ; gdl=1-gd; gd2=1-gd*gd;

In=log(gamma); ln2=pow(log(gamma},2); ln3=pow(log{gamma),3);1ln22=1n2+2;

ss=sqrt ((2+1n2) * (2+1n2) *gdl*gdl-4*dt*dt*gd*1n2) ;

kl:(2*gd—z*dt*ln—z—gdl*1n2+ss)/(2*gd2+4*dt*gd*ln+gd2*1n2+gdl*ss)*gdl/dt;

k2={1n22*gdl*gdl-2*dt*dt*gd*1n2-gdl*ss) /2/dt/dc/gd/1n3;

k3=-{ln22*gd2+4*dt*gd*Lln+gdl*ss) /2/dt/1n3;

rnd_seed=7;

for {s=0;s<nsys;s++) { //each of nsys parallel systems get different weights
rnd(};rnd () ;rnd() ;rond(); //this is to keep compatability with older code
wgxx [s]=eps*rnd () ;wgxul[s]=eps*rnd () ;wquuls}=eps*rnd(); //initialize weights

rnd_seed=7; //reseed the generator so A function gets same weights as Q

for (s=0;s<nsys;s++) { //each of nsys parallel systems get different weights
rnd () ;rnd () ;rnd () ;wav[sl=eps*rnd() ;
waxx [s]=eps*rnd () ;waxuls] =eps*rnd (} ;wauu[s] =eps*rnd () ;

}

printf{"%1.0e %31 %5.3f %5.3f %5.3f %5.3f %3.1f "

dt, (int)nsys, alphaa,alphav,alphaw, alphaq,noise) ;
}

void avg_av(void) { //find the average error and print current time
double piam, inf=0;
for (s=piam=0;s<nsys;s++) { // find mean policy error
piam+=fabs (kl-waxuls]/2/wauulis] ) /nsys;

o]
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if (fabs(waxx[s])>le9 || fabs(waxu(s])>le9 ||
fabs (wauu[s] ) >1e9 || fabs{wav[s])>1e9)
inf=1; //if any weight blows up, then learning takes infinite time

if ((£/100)*100==t) printf("%s(%091d) ", &back,t);
if (piam<.001 && !domnea) {

donea=1;

printf ("%s%91d v, &back, t) ;

if (doneq) printf ("\n");
}

if (inf && !donea) {

donea=1;
printf("%s infinity ", &back) ;
if (doneq) printf ("\n");

}
H

void avg g(void) { //find the average error and print current time
double pigm, inf=0;
for (s=pigm=0;s<nsys;s++) { //find mean poliecy error
piqm+=fabs(k1-wqxu[s]/2/wquu[s])/nsys;
if (fabs(wgxx[s])>le9 || fabs(wgxuls])>le9 || fabs (wquuls])>le9)
inf=1; //if any weight blows up, then learning takes infinite time
} if ((£/100)*100==t) printf("%s(%091d) ",&back,t);
if (pigme<.001 && !doneq) {
doneqg=1;
printf ("$s%91d \n", &back,t);

if (inf && !doneq) {

doneg=1;
printf("%s infinity \n", &back) ;

}

void update_av{void) { //do both learning and normalizing
double aml,am0,xla,ra,a,v0,vl,x0,dv,ev,ea,ua, aum,da,amon;

x0=rnd () ; //pick initial state x0 and action ua
if (rnd()»>0) uva=rnd() ;
else if (wauuls]<0) ua=-waxuls] *x0/2/wauu(s] ;
else if (waxuls]>0) ua=1;
else ua=-1;
if (ua>1) ua=1; else if (ua<~1) ua=-1;
xla=x0+na*dt; : //x1 is state after doing ua in x0
ra=R(x0,ua)+noise*rnd()/10000; //ra is reinforcement + 0 mean noise
a=waxx [s] *x0*x0+waxu[s] *x0*ua+wauu [s] *ua*ua; //a is A(x0,ua)
v0=wav [s]*x0*x0; //v0 is V(x0)
vi=wav[s] *xla*xla; //v1l is V(x1)
if (wauuls]>=0) amO=waxx[s]*x0*x0+fabs (waxuls]*x0)+wauu[s];
else {
aum= (~waxu[s] *x0/2. /wauu[s]) ;
if (aum<-1.) aum=-1.;

else if (aum> 1.) aum= 1.;
amO=waxx [8] *x0*x0+waxu [s] *x0*aum+wauu [s] *aum*aum;
} //amd is Rmax(x0) before the weights change
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if {wauuls]>=0) aml=waxx[s]*xla*xla+fabs (waxuls]*xla)+wauuis];

else {
aum= {-waxu[sl*xla/2./wauuls]);
if {aum<-1.) aum=-1.;

else if {aum> 1.) aum= 1.;
aml=waxx [s] *xla*xla+waxu[s] *xla*aum+wauu[s] *aum*aum;

} //aml is Amax(x1l) before the weights change
da=(-v0+gd*vl+ra)/dt+am0; //desired output of advantage net is da

ea=da-a; //error in output is ea

waxx {s] +=ea*x0*x0*alphaa; //change 3 weights of advantage net with LMS

waxuls] +=ea*x0*ua*alphaa;
wauu [s] +=ea*ua*ua*alphaa;
if (wauu[s]>=0) amOn=waxx[s]*x0*x0+fabs(waxuls]*x0)}+wauuls];

else {
aum= (-waxu{s]*x0/2./wauu(s]);
if (aum<-1.) aum=-1.;

else if (aum> 1.) aum= 1.;
amOn=waxx [s] *x0*x0+waxu {s] *x0*aum+wauu [s] *aum*aum;

}; //amdn is new Amax(x0) after the weights change

dv= (amOn-am0) /alphaa+v0; //desired output of value net is dv

ev=dv-v0; //error in output is ev

wav([s] +=ev¥*x0*x0*alphav; //change the weight of the value net with LMS

[ mmm e e e normalization ------------csmmmmmma

x0=rnd () ;ua=rnd () ;a=waxx [g] *x0*x0+waxu[s] *x0*ua+wauu [s] *ua*ua;
if (wauu{s]>=0) amO=waxx[s]*x0*x0+fabs (waxu[s]*x0)+wauuls];

else {
aums= (-waxu [s]*x0/2. /wauuls]) ;
if (aum<-1.) aum=-1.;

else if (aum> 1.) aum= 1.;
am0=waxx [s] *x0*x0+waxu [s] *x0*aum+wauu [s] *aum*aum;

}; //am0 is Bmax(x0) after the weights change
da=a-amo; //desired output of advantage net is da
ea=da-a; //error in output is ea

waxx [s] +=ea*x0*x0*alphaw;//change 3 weights of advantage net with delta rule
waxu[s] +=ea*x0*ua*alphaw;
wauu [s] +=ea*ua*ua*alphaw;

} //end update_av

void update_qg{void) { //do Q learning
double x0,x1q,rq,q,v0,vl,qm,ud,xla,qum,dq, eq;

x0=rnd(}; //pick initial state x0, and action ug
if (xrnd(}>0) ug=rnd () ;

else if {wquulsl<0) ug=-wgxul[s]*x0/2/wquu[s] ;

else 1if (wgxulsl>0) ug=1;

else ug=-1;

if {ug>1) ug=1; else if (ug<-1) ug=-1;

x1lg=x0+ug*dt; //x1lq is new state after doing ug in x0
rg=R {x0,uq) +noise*rnd () /10000; //rq is reinforcement + zero mean noise
g=wgxx [s] *x0*x0+wgxu [s] *x0*ug+wquu [s] *ug*ug; //q is Q{x0,uqg)

vO=wav[s]*x0*x0; // v0 is Qmax(x0)

vi=wav([s] *xla*xla; // vl is Qmax(x1)

if (wguuls]>=0) =waxx [s] *x1g*xlg+fabs (wgxu [s] *x1q) +wquu[s] ;

else {

qum= (-wgxu [s] *x1q/2. /wquu{sl) ;
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if (qume-1.) qum=-1.;
else if (qum> 1.) qum= 1.;
qu=wqxx [s] *x1g*xlg+waxu [s] *x1g*qum+wguu [s] *qum* qum;
//gqm is Qmax(x1) before the weights change
dg=gd*qm+rq; //desired output of Q met is dgq
eg=dq-q; //error in output is eq
waxx [s] +=eq*x0*x0*alphaq; //change 3 weights of Q net with delta rule
wagxu [s] +=eq*x0*ug*alphaq;
wquu [s] +=eg*ug*ug*alphaq;
} //end update_g

}

double rnd() { //return a random double in the range [-1,1]
rnd seed = rnd seed * 1103515245 + 12345;
return (2.*(double) { (rnd_seed>>16)&32767) / (double)32767-1.) ;
} //rnd_seed should be a 32-bit unsigned integer
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What is claimed is:
1. A learning controller comprising:

means for storing a value function V and an advantage
function A in a function approximation memory sys-
tem;

means for updating said value function V and said advan-
tage function A according to reinforcements received
from an environment;

said means for updating including learning means for
performing an action u, in a state x,, leading to a state
X.., and a reinforcement R,,(X,.u,);

said means for updating also including means for updat-
ing said advantage function A, and changing a maxi-
mum value, A,,,,. thereof;

said means for updating also including means for updat-
ing said value function V in response to said A, ,, value
change;

means for normalizing update of said advantage function
A, by choosing an action u randomly, with uniform
probability; and

means for performing said action u and said normalizing
update of said advantage function A in a state x;

said learning means and said normalizing update func-
tioning according to an algorithm of:

Alxy, 1) 4 Amax() +

YV (ea0) + Raalxgs ) — V)

At
Vi) <8 veoy+

A 00) ~ Az, ()

learning updates

38

A1) <2 Al + ViEia) + V)Y + rix,e).

4. Alearning controller according to claim 1, wherein said
function approximation memory system comprises a multi-
layer perceptron neural network.

5. Alearning controller according to claim 1, wherein said
function approximation memory system comprises a radial
basis function network.

6. A learning controller according to claim 1, wherein said
function approximation memory system comprises a
memory based learning system.

7. A method of learning, for a controller having means for
storing a value function V and an advantage function Ain a
function-approximation memory, said method comprising
the steps of:

updating said value function V and said advantage func-

tion A in response to reinforcement information
received from an environment input;

said environment input including a leaming state wherein

performing an action u, in a state x,, leads to a state X, 5,
and a reinforcement R, ,(x,,u,);

changing a stored maximum value A, of said advantage

15

20

25 function A by updating said advantage function A;
updating said value function V in response to said A,
value change;
normalizing said advantage function A by choosing an
action u randomly, with uniform probability;
30

performing said action u and said normalizing update of
said advantage function A in a state x; and

performing said learning updates and said normalizing

o . .
update in accordance with an algorithm of:
Vi Ra(xy, u) — Vi
Al 1) o At + YN (xriar) + zzt(xl u;) ()
learning updates
B Amaxnew(xt) - A"‘“‘old(x’)
Vix) Vix) + o
Al 1) <2 AG 0) ~ A0 } normalizing update
-continued 45 where said
o
A(x, u) ‘<_m A(x, 1) — Amgx(x) } normalizing update X< Y

where said
x<2y

symbology represents a function-approximating supervised
learning system, generating an output of X, being trained to
generate a desired output of Y at a learning rate of a.

2. Alearning controller according to claim 1, wherein said
function approximation memory system comprises a lookup
table, wherein said learning means updating and said nor-
malizing update are equivalent to replacing an entry X in
said table with the value (1-a) X+aY.

3. A learning controller according to claim 1, wherein for
continuous time, said equations are determined by taking a
mathematical limit as At goes to zero, so said second two
update equations remain unchanged, and said first update
equation becomes:

symbology represents a function-approximating supervised
50 learning system, generating an output of X, being trained to
generate a desired output of Y at a learning rate of a.
8. A learning controller comprising:
means for storing a value function V and an advantage
function A in a function approximation memory;
means for updating said value function V and said advan-
tage function A in said function approximation memory
according to reinforcement information received from
an environment input;

said means for updating including learning means for
performing an action u, in a state x,, leading to a state
X, 4, and a reinforcement Ry,(x,u,);

said means for updating also including means for updat-
ing said advantage function A, and changing a maxi-
mum value, A, ., thereof;

said means for updating also including means for updat-

ing said value function V in response to said A, ., value
change;

55

60

65

max



5,608,843
39 40

means for choosing a learning means action u randomly,
with uniform probability and for normalizing said
update of said advantage function A;

means for performing said action u and said normalizing
update of said advantage function A in a state x; 5

one of said learning means update and said normalizing
update being in accordance with a predetermined learn-
ing algorithm and a predetermined normalizing update
algorithm respectively.

9. The learning controller of claim 8 wherein said learning 10
means update and said normalizing update are each in
accordance with predetermined algorithms.

10. The learning controller of claim 9 wherein said
learning means update and said normalizing update are each
in accordance with an algorithm of:

YV(xan) + R, ) — Vixg)

A ) ST Al +

A learning updat
earm: upaates
8 Anas, () — Amas %) et
Vi) V(x) +
o

Al u) em A, 1) — Amax(x) } normalizing update

25
where said symbology represents a function-approximating supervised

learning system, generating an output of X, being trained to
generate a desired output of Y at a learning rate of a.

x<%y
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