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Abstract

Interference in neural networks occurs when learning in one area of the input space causes
unlearning in another area. Networks that are less susceptible to interference are referred to as spa-
tially local networks. To obtain a better understanding of these properties, a theoretical framework,
consisting of a measure of interference and a measure of network localization, is developed. These
measures incorporate not only the network weights and architecture but also the learning algorithm.
Using this framework to analyze sigmoidal, multi-layer perceptron (MLP) networks that employ the
back-propagation learning algorithm on the quadratic cost function, we address a familiar miscon-
ception that single-hidden-layer, sigmoidal networks are inherently non-local by demonstrating that
given a sufficiently large number of adjustable weights, single-hidden-layer, sigmoidal MLPs exist
that are arbitrarily local and retain the ability to approximate any continuous function on a compact
domain.

*Partially supported under Task 2312 R1 by the United States Air Force Office of Scientific Research.



1 Introduction

Although the concept of local learning has become familiar in the neural network literature, there is no
consensus on the description of local learning. The only common element found in characterizations of
local learning is the general understanding that there are links or associations between regions of the
input space and sets of adjustable parameters. Typically, a description of a local learning system is
simply based on the characteristics of the particular network structure, rather than some fundamental
definition of localization [1, 2, 3, 4]. The literature does not provide a universally accepted description
of local learning systems nor does it provide any method for measuring the localization properties of a
learning system.

Although no rigorous description of local learning is available, the ability of a local learning system
to alleviate interference problems during learning is well accepted. In the case of incremental supervised
learning, where weights are updated after each presentation of a training sample, interference occurs
when training at one point of the input space affects the input/output (I/O) map in an undesirable way
in other areas of the input space. The general problem of interference has been uncovered in various
forms by researchers in many areas [5, 1]. For example, consider a dynamical system after it settles into
a desired trajectory (where only a small portion of the input space is reached). Suppose that without
noise, a network function approximator learns the system dynamics, reduces the approximation error,
and then ceases learning. In the presence of noise, however, the learning algorithm remains active
and continually memorizes the system dynamics along the trajectory (because the error never goes to
zero) even though there is no need to do so. “Global Network Collapse” results, as the other areas of
the input space (those areas not on the trajectory) gradually unlearn due to interference [1]. Another
variant of the interference problem is in the classification literature: “Catastrophic Interference” occurs
when the training of a new pattern causes the unlearning of originally trained patterns [5]. These and
other interference problems may appear different when embedded in their particular applications but
the root of these problems is the same; learning tends to interfere with previous learning elsewhere in
the input space.

Although local networks, in general, lessen the problem of interference, there are trade-offs to con-

sider (see Barto [6] for a nice summary). For example, look-up tables can be thought of as the most



local of approximation structures because there is a one-to-one relationship between a point in the in-
put space and an adjustable parameter. However, look-up tables are obviously inappropriate when the
dimension of the problem grows large because the curse of dimensionality [7] causes memory require-
ments to become prohibitive; furthermore, look-up tables provide no generalization of untrained points.
Finding the correct balance between avoiding interference problems, reducing memory requirements,
and enhancing generalization, that is, finding a balance between local versus non-local networks, is a
key problem in network learning.

The trade-offs involved in local learning systems are closely related to the well-known stability-
plasticity dilemma [8], namely how to design a learning system that is “plastic” enough to learn new
patterns, and yet is stable enough to remember old learned patterns. Carpenter and Grossberg [9]
developed an architectural solution to this question using their adaptive resonance theory (ART),
which overcomes the stability-plasticity dilemma by adapting the stored pattern of a category only
when the input is sufficiently similar to it.

This paper develops analytical tools necessary to measure the localization properties of a network.
Networks that are less prone to interference are called local because learning in one region of the
input space causes changes in the I/O map in only a small region local to the point of training. This
link between interference during the learning process and the localization properties of a network is
made explicit by the incorporation of the learning algorithm into the proposed measures of interference
and localization. The measure of interference is defined by answering the question, “How much does
learning at 2 affect the I/O map at 2’ # 2?” A second measure proposed in this paper quantifies the
degree of localization of a network, by taking the inverse of the mean squared interference over an input
domain. According to this definition, the I/O map of a local network in one region of the input space
is less likely to be unlearned when learning moves to another area of the input space. This measure of
localization incorporates the learning algorithm, which is appropriate because localization is based on
interference, and interference is a side effect of learning, which, in turn, is controlled by the learning
algorithm.

We use the localization measure on a variety of network structures, assuming a gradient descent

learning algorithm, and show that it agrees with the intuitive interpretation of local networks. A main



contribution of this paper is a theorem showing that given an arbitrarily large number of weights, a
single-hidden-layer, multi-layer perceptron (MLP) network with a sigmoidal activation function exists
that is as local as desired, that is, on average, learning at one point will affect another point to as small a
degree as desired. It is also shown that this property does not affect the universal-approximation ability
of such a network. Specifically it is shown that a single-hidden-layer, sigmoidal MLP can be as local
as desired, assuming back-propagation, while simultaneously approximating any continuous function
over a compact set to any degree desired. Therefore, this result provides a theoretical framework for
developing networks that are both universal approzimators and universal localizers.

The paper is organized as follows. In Section 2 we formally define interference and localization. In
Section 3 we evaluate the localization properties of radial basis functions (RBF') and multi-layer per-
ceptron (MLP) networks with sigmoidal activation functions. We then present a localization theorem
that shows that with a sufficient number of carefully chosen weights, an MLP exists that is as local as
desired. This result is then extended in Section 4 to show that, in addition to the universal-localization
property, such an MLP retains its universal-approximation ability. Some concluding remarks are pre-

sented in Section 5.

2 Definition of Interference and Localization

Consider a network whose input/output map is described by y = f(x,w), where y € R is the output
of the network, x € X" is the input, w € W is the weight vector, f : X x W — R is a smooth map
describing the network topology, X C R" is the input domain, and W C R™ is the weight domain.
During supervised learning, the objective is to adjust w such that the network approximates a desired
function y* = f*(x). We assume the learning algorithm has the form: Aw = aH(x,w,¢), where Aw
is the weight change in discrete time, a > 0 is the learning rate constant, H is the direction for weight
change, and e = y — y* is the approximation error.

Typically, the localization properties of a network are described by the sensitivity of the network
output with respect to weight perturbations. In general, however, this sensitivity function is insufficient
for characterizing interference and localization because it ignores the learning algorithm, which is

responsible for the weight perturbations. To incorporate the learning algorithm into a measure of
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Figure 1: Illustrative example of how learning at x may cause interference at a’.

interference, consider what happens during one weight update. Given a training input/output sample
(x,y*), the current weight w is updated to a new weight w + aH(x,w,e). At the point x, where
the network is trained, the network map changes from f(x,w) to f(x,w+ aH(x,w,e¢)). During this
weight update the network I/O map is also affected at other points such as x’ # x. We first define a
measure for interference between points which is later used to derive a measure for localization of the
overall network. To formulate a measure of interference at x’ due to learning at x, consider the ratio
p of the change in the I/O map at x’ divided by the change in the I/O map at x due to learning at x;

that is,
& (X, w)

fx,w)

J(x', w4+ aH(x,w,e))
f(x,w+ aH(x,w,¢)) (1)

p -
To illustrate the derivation of a measure of interference, consider Figure 1 which graphically depicts a
typical network’s output before and after a weight update. The ratio in (1) is constructed by dividing
the change in the output at x’, which in this example is N = %, by the change in output at x, which is
D= % The ratio p = N/D = 1/2is a scalar quantity that represents how much learning at x interferes
with what is known at x’.

In general, p is not a useful measure of interference because (i) p depends on an arbitrary learning

rate a, (ii) p depends on an arbitrary desired training sample (x,y*) via e, and (ii7) p is undefined when

the denominator is zero. To redress the first two deficiencies, we take the limit of p as a approaches zero



and set e to one. This choice of e does not affect lim,_,q p for algorithms such as gradient descent on
the standard quadratic cost function, J = %62, (back-propagation) where the resulting weight change is
Aw = —aeVy f(x,w). In this case, the particular choice of e is irrelevant because it can be subsumed
into a, which approaches zero. Finally, if the lim,_¢ p|.=1 does not exist, we define interference to
be zero because (the attempt at) learning at x does not affect the output at x’. Based on the above

modifications, a general definition of interference is given.

Definition 1 Let f represent a network 1/0 map with weight vector w which is updated according to
a generic learning algorithm Aw = aH(x,w,e). Then the interference (with unit error) at x' due to

learning at x is denoted by T; v 1(Xx,X') and is defined as

lima—o FOw) - f(x! wtaH (x,w,1)) if limit exists
Ly (%) 2 =SB ) 2

0 otherwise
Interference, according to this definition, is a ratio of the change in the (network) output at x’ divided
by the change in the output at x due to learning at x.

Therefore, this definition provides a measure of the degree to which training at an input point x
influences the input/output function of the network at other points x’. In general, the interference
measure 7 can take any real value. In the case that 7 is negative, it represents opposite signs for the
change in the output at x and x’. It is worth noting that, in general, Z;y g(x,X') # Z;w H(X',X)
indicating a non-symmetric behavior between learning at x and learning at x’. As expected, in the
special case that x = x’ the interference 7y, g(x,x’) = 1.

For any network function approximator, f, that has a well defined gradient (with respect to w)

everywhere in X', applying L’Hospital’s rule to (2) gives

lim J(x',w)— f(x',w+ aH(x,w, 1)) _ i %[f(X/,W)—f(X/,W—I—OéH(X,W,l))]
a—0 f(x,w)— f(x,w+ aH(x,w,1)) a—0 %[f(x,w)—f(x,w—l—aH(x,W,l))}

(wa(x’, w)-H(x,w, 1))

Vwf(x,w) -H(x,w,1) (3)

where Vy f(x,w) is the gradient vector of f(x,w) with respect to w, leading to an equivalent yet



simpler form of the interference measure given by

'w)-H .
A (VVVV‘(/J;(())((:VVS‘//))~H(()):;VV:;11))) if Vwf(x,w) -H(x,w,1)# 0

0 otherwise.

(4)

If,W,H(Xv X/)

In the special case that the learning algorithm is gradient descent applied to the standard quadratic

cost function (back-propagation), H(x,w,e) = —eVy f(x,w). Hence, in this case (4) reduces to

Yw/XW)VwilX W) if g f(x,w) # 0
TswH(x,X) = IVw W] v )

0 otherwise.
The above definition of interference measure, given equivalently by (2) and (4), provides the underlying
framework for defining a measure of localization, which is done next. Specifically, interference is defined
as a function of two points x,x’ € X', while localization is defined over the entire input domain X'. A
definition for network localization, given below, provides a measure of how immune a network is to

interference.

Definition 2 Let f represent a network 1/0 map with weight vector w which is updated according to
the learning algorithm Aw = oH(x,w,e). Then the localization of the network over an input domain

X is denoted by L Hq x and is defined as

A _
Liwnax=1/1;wHx (6)

where Ty H.x 2 ElZ;w u(x,x)*] and E[] is the expected value over all x and X' chosen from some

probability density function (pdf) over the input domain X .

If the pdf of both x and x’ is uniformly distributed over X', (6) becomes

-1

Liwnax= [/X/AzIf’W’H(X’X/)ZdXdX/ . (7)

In general, the localization measure Ly | y can take any positive real value. Large values of

Ly w H,x indicate the network is more local over the domain A". This definition transforms a measure



of interference (between two points in the input domain) into a measure of localization (of a network
over the entire input domain). The interference and localization measures of different networks are
further illustrated below by specific examples. To simplify the analysis, in the rest of the paper we

assume that the algorithm H(x,w,e) is gradient descent applied to the quadratic cost function.

3 Application of the Theory of Localization

The previous section developed interference and localization measures based on the learning algorithm.
But it should be emphasized that these measures are also a function of the network architecture and
weights. We demonstrate this with the following simple example which confirms our intuition that
decreasing the widths (dilation) of a Gaussian RBF' increases its degree of localization. This example
also provides a better understanding of the definition of interference given in (2).

FErample 1: Consider a single-input, single-output RBF network with 8 nodes, each of which has an
adjustable amplitude a;, inverted width b;, and center ¢;. The learning algorithm is gradient descent

on the quadratic error surface, and the network has the form

8

fla,w) =Y aem((meh’ (8)

=1

where w = [ay---ag by -+ -bg ¢;---¢cg]’, and a; = 1, b; = 1, ¢; = /7, for i € {0,---7}. The centers
are equally spaced along the input domain & = [0, 1]. The plot of Z; y g(2,2’) shown in Figure
2(a) illustrates the localization properties of this network, with 7, g(z,2’) = 1 when 2 = 2" and

Tswr(z,2') <1 when 2 # 2'. Now we consider a new weight vector

W:[al---ag 2b1"'2b861"'08]T (9)

whose widths are one-half the size of those in w. As can be seen from Figure 2(b), the network exhibits
more local properties since the average squared Z; & g (7, 2') is less over the domain &X'. By computing
the localization measure for each network of the form (8), with w and w respectively, a comparison of
Liwny=1475and Ly gy = 2.298 reveals that f(z,w) is more local. o

Although these results are not surprising, they do lead to an interesting question: Since the weight
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Figure 2: Interference for an eight-node RBF with (a) wide widths and (b) narrow widths.
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Figure 3: Interference for an eight-node, sigmoidal, single-hidden-layer MLP with (a) non-local and (b)
local weight configurations.



configuration affects how local an RBF is, would the same be true of a single-hidden-layer MLP with
a sigmoidal activation function? The following example shows that, indeed, different weight configura-
tions produce different degrees of localization.

Frample 2: Consider a single-input, single-output eight-node, single-hidden-layer MLP with sig-

moidal activation functions whose network architecture is given as

8

Fleow) = 3 a1 4 ety (10)

=1

where w = [ay - -ag by --+bg ¢y - -cg)T, and a; = 7,b; = .7, ¢; = i/7,for i € {0,---7}. Figure 3(a) plots
Tt wm(z,2") showing poor local properties as can be seen by noting that interference is greater than

.4 over the entire domain. Using a new weight vector,
W = [al---ag 14b114b8 1401"'1468]T (11)

does indeed increase the network’s localization, producing L gy = 1.059 and L; g g y = 2.362. In
fact, f(«,w) is more local than the corresponding local RBF network shown in Example 1. o

Although the motivation provided for this example was to show that the localization properties
of sigmoidal MLPs are dependent on the weights, the example raises a new question: How local can
sigmoidal MLPs be? The following theorem shows that sigmoidal MLPs can be arbitrarily local by
proving analytically that given a sufliciently large number of weights, a single-hidden-layer MLP exists

that is arbitrarily local. The theorem assumes the back-propagation algorithm on an MLP given by

N . 1
f(xv W) = Z a; (1 + eci_2]=1 bijxj) (12)
=1
whose weight vector is
w=[a" bl ]! (13)

where a = [a1---an]’, ¢ = [e1---en]T, b = [by---by]! and b; = [bsy -+ -b;,] for i = 1,.., N and the

T is in the domain X.

input, x = [x1 - 2,]
Theorem 1 (Universal Localization) Let X' be a compact subset of R™ and H = —eVy, f(x,w). Then

10



for arbitrary M > 0, there exist an integer N and real weights given by (13) as a;, ¢;(i = 1,...,N), and

bij(i=1,...,N)(j=1,...,n), such that (12) satisfies

Lf,W,H,X > M. (14)

The proof is given in the Appendix.

To illustrate how a network’s localization measure is influenced, we compare interference in the
RBF and MLP networks used in Examples 1 and 2, again assuming the back-propagation learning
algorithm. Using the RBF network, we find the partial derivatives of the output with respect to a
representative amplitude weight a;, inverted width weight b;, and center weight ¢; as shown in Figure
4. According to equation (5) and by continuity of f, if |# — 2’| is small then Z;y g(z,2") = 1. If
|# — 2’| is large then it is not possible for corresponding elements of the two vectors Vy f(2, w) and
Vw/f(2',w) to both be large, which can be seen by noting that all three plots of Figure 4 go to zero
as © and 2’ separate, therefore Vy f(z,w) - Vi f(2’,w) will be small. The magnitude of V f(2,w)
will not be near zero, however, if for every z there is a corresponding element in V f(z,w) whose
magnitude is large, a reasonable assumption for a useful local network!. Therefore, in this analysis of
(5), the numerator will be small compared to the denominator when |z — 2’| is large, producing a local
network. For basis functions whose widths are small we see according to (5) interference is small and
that a small perturbation in a single weight affects only a small portion of the I/O map. As width
weights are decreased one can see how an RBF network becomes more local as shown in Example 1.

Repeating this analysis for single-hidden-layer MLPs leads to Figure 5. Figure 5(a) shows non-local
properties because it is possible for Vy f(z,w) - Vi f(2',w) to be large even when z and 2’ are far
from one another. The functions shown in Figure 5(b) and 5(c), however, vanish rapidly at positive
and negative infinity and therefore exhibit local properties (see Sjoberg et al. [3]). The network
architecture and weights help determine the interference that occurs and hence play an important role

in determining network localization.

!Baker and Farrell [4] use the term “coverage” for this condition.
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A special case occurs for linearly parameterized networks, that is, networks whose input/output

characteristics are expressed as

fxw) = w-£(x), (15)

where £ : X' — R™ is the basis vector. Examples of linearly parameterized approximation structures
include polynomials and RBFs with fixed centers and widths. For linearly parameterized networks,
Vwf(x,w) = &(x) which is independent of the weight vector w. Therefore, the measure of interference

given by (5) becomes

&(x)-€(x1) if £(x 0
Twa(x,x)=¢ P (x) # "
0 otherwise

which is also independent of the weights. Clearly, the localization measure will also be independent of
w, implying that for linearly parameterized networks modifying its weights will not affect its localization
properties. For example, an RBF network with fixed centers and widths cannot become more or less

local by changing the amplitude weights.

4 Localization and Approximation

In the preceding section only the local properties of a network were discussed; theorem 1 only ad-
dresses the degree of localization found in the network. Because these networks are operating as
function approximators it is imperative that the issue of approximation be addressed in conjunction
with localization. This leads us to a new question, “Does there exist a single-hidden-layer MLP net-
work that is arbitrarily local and approximates any smooth function arbitrarily closely in a compact
set?” The following theorem combines the universal-localization theorem of Section 3 and well-known,

universal-approximation results of single-hidden-layer sigmoidal MLPs. (See, for example, [10, 11, 12]).

Theorem 2 Let X' be a compact subset of R", H = —eVwh(x,w), and g*(x) be a real valued con-
tinuous function on X. Then for arbitrary ¢ > 0, M > 0, there exist an integer N and real con-

stants given by (13) as a;, ¢;(1 = 1,...,N), and b;;(i = 1,...,N)(j = 1,...,n), such that h(x,w) =

14



. L -1
SN (1 + T2 ,ij) satisfies

max |h(x,w)— ¢g"(x)| < € (17)

and

Lywu x> M. (18)

)

Proof. This proof is a combination of the proof of Theorem 1 and a universal-approximation theorem
in [10], which says that given a real-valued continuous function ¢*(x) on X', then for arbitrary € > 0
there exist a number of nodes N, and weights w, such that g(x,w) = sV a;(1+ eci_zﬂ=1 b”xj)_l

satisfies maxxey |9(x, w)— g"(x))| < €. Using this weight vector w and function g(x, w), we construct

a sequence (indexed by k) of functions
_ A
(%, W) = fo(x, W) — fr(x, W'g) + g(x, W), (19)

where wy, 2 [wilw' w7, fi, and wy are defined in (26) and (34). Then interference, Ty, w, H(x,X'),

is given by

Vw, fr(x, wp) - Vwkfk(xl7wk) + lekfk(x7wlk) ’ VW'kfk(leW/k) + Vwg(x, W) Vywg(x',w)
Vkak(Xvwk) : Vkak(Xvwk) + lekfk(X,W’k) : lekfk(X,W’k) + ng(wi) : ng(wi)
(20)

If we then set w'y, = wy, we see the function hy(x, wi) has the same I/O map as g(x, w) for all £ which
proves the universal-approximation condition (17) and because Vi, fu(x, Wi) = Vs, fr(x, w'z), (20)

reduces to

2Vw, [u(%, Wi) - Viw, f5(x, Wi) + Vwg(x, W) - Vwg (X, W)) (21)

T / :(
e B X = g ) Vi fo(% We) & Vg%, W - Vg (3, W)

Because (21) is similar to (27) we borrow from the proof of Theorem 1. The denominator of (27) equals

the denominator of (35), which approaches infinity as k approaches infinity (as can be seen by noting

15



that #||zx(x, w)||? is bounded below by B; as shown using (40) and the definition of ). Therefore

kh_}rgo 2Vw, [r(x, W) - Vi, fo(x, wg) = 00 (22)

and because Vywg(x,w) and Vywg(x’, w) are positive and independent of k, we see that

. Vwg(x,w) - Vyg(x',w)
lim = 0. 23
k—co QVkak(Xv Wk) : Vwkfk(xv Wk) ( )

Using (27) and (45) we see that

lim 7, w, H(x,x') =0 almost everywhere. (24)

k—o0

Because Z;, , H(x,x') is bounded via (41) one can see that (21) is also bounded. Using the Lebesgue

Dominated Convergence Theorem (as was done in the appendix) one can show

5 Conclusion

The measures of localization and interference proposed in this paper provide a framework of network
localization based on the ability of the network to deter interference during learning. This framework
allows us to see that since different learning algorithms give different degrees of interference in a
network, then a measure of localization should incorporate the learning algorithm as well as the network
architecture and weights. The proposed measure of localization can be applied to any continuous
approximating structure of the form f(x,w)and any learning algorithm of the form Aw = aH(x, w, €),
where x is the input vector, w represents the adjustable weights and Vy f(x, w) is defined everywhere
on the input domain.

We show that this framework is consistent with other descriptions of local learning in the litera-

16



ture. When applied to radial basis function networks it delivers results consistent with the literature’s
heuristic understanding of local networks. We also apply these measures to sigmoidal networks and
show, for back-propagation as the learning algorithm, that a single-hidden-layer sigmoidal network can
approximate any desired continuous function and be arbitrarily local, provided an arbitrarily large
number of weights are available. This result may give designers confidence to use MLPs for applica-
tions previously delegated to networks whose localization property is easier to visualize, such as RBFs.
Applying this localization theory to other network-architecture/learning-algorithm combinations may
uncover other useful localization properties.

Since interference is, in general, a function of the weight vector, it may be incorporated into a
cost function, leading to new learning algorithms that, in addition to approximation, optimize the
localization properties of a network. Although the number of weights and the degree of localization
are not directly related, we can say that the number of weights is related to the potential for a network
to be local. A network’s extra degrees of freedom (in the form of extra weights) may be used to make
a network more local, while simultaneously approximating a desired function. In certain applications
where interference causes problems, this learning algorithm may decrease training times. Exploring

such algorithms is an area for future research.

Appendix: Proof of Theorem 1

We prove Theorem 1 by construction. A sequence of sigmoidal networks based on (12)

N , "oy -1
fk(wik) = Z a; K (1 + €Cl’k_ZJ:1 1J7k$J) (26)

=1

is used to generate a sequence of interferences using (5)

Viw, J1(%, Wi) - Vi, fe(x, W)
T X,X/ :< Wi ’ k ’ ) 27
i B0 = (G wa) - Vo, fulx, i) &7
where H = —eVy f(x,w), that is, the learning algorithm is back-propagation. We assume without

loss of generality that the ratio on the right-hand-side of (27) exists. If the ratio does not exist,

17



then according to (5), Z5, w, H(X,X') is zero and the arguments of this proof remain valid. With an

appropriate choice of wj and Ni, we show the following two statements:
L. Z; w, H(x,x') is bounded for all k € N, x,x" € [0, 1].
2. The limit of 7y, v, 1(x,X’) as k approaches infinity is zero almost everywhere.

Expanding (27) allows us to write 7y, w, H(X,X') as

N
> [aaaiykfk(xawk) aaai’kfk(x',wk) + 200 %fk(X,Wk) %fk(xlawk) + r%fk(xawk) %fk(xlawk)]

N, 2 N E) N, 9
2t dai x fk(><7VVk)2 + 220 ?:1 mfk(xawk)Q + 2225 dcix fk(Xawk)Q

and by defining

n -1
yi,k(x, Wk) é (1 + 6Ci’k_ZJ=1 bijykxj) (28)

as the output of the ith node in the hidden layer, we see that we can write Z;_ , g(x,x') as

Sk [@/z',k(X, W)y k(X W)+ af (1 + 300 52 )y k(% Wi )y p (3, Wi ) (1= 9w (6, W) (1 — i k(X Wk))]
S ik (6 W) + a2 (1 S0 252k, W) (1= i s (x, wi))?|

(29)

Simplifying further by letting

A
2 (X, W) = Yk (X, W) (1 — yi p(x, W), (30)
FEI+Y ajal, (31)
=1
and
£é1+2xj2, (32)
=1
we see

PO [Z/i,k(X, Wi )Yi k(X W) + af @ 2 (X, W) 2 (X Wk)]

S (i wi)® + @iz wi)?

IfkvwlmH(X’ X/) =
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Let the weights, wy, and number of nodes for our constructed sequence of sigmoidal networks be
selected as

a = Qk, bijr = Qk, cip =1t and Np= n2". (34)

Letting zj(x, wi) = [21,6(%, Wi), oy 285 (%, Wi)]T and yr(x, wi) = [y1,46(X, W), oo yn, e (X, Wi )]T, we

recall that zx(x,wy) - zp(x',wi) = ||ze(x, wi)|| ||zx(x’, wg)|| cos@, where 8 is the angle between the

vectors z;(x, wy) and zg(x’, wy). Therefore we can write

. / 22kA/ / 0
T, wom(xx) = yE(6 W) - yR(xX, W) £ 2778 Zk(;<];ka)\!\!Zk(X aVQVk)H cos (35)
' ' Yk(wik) . yk(wik) + 2 $HZk(X,Wk)H

_ 27y, wi) - ye(x wi) + @[]z (5, w2k (%', W) cos 0 (36)
272y (x, W) - yr(X, W) + 2|2k (x, wi)||?

In order to show Iy, w, m(x,x’) is bounded, we first find an upper and lower bound on [/zx(-)||.
Using weight values given in (34) we see y; r(x, wy) = [1 + (=2~ where z 2 >_j=1 @j. Substituting
i k(x, wy) into (30) and letting g(s) 2 (1+e5)2[1— (1 +e*)71? = (1 + €*)™* gives

n2k

lze(x, Wil = D g(i - 2%a). (37)

=1
Let g 2 floor(Qki), then a 2 2% — t;, has the property that 0 < a < 1. Using the change of variables
i = i— 1y, to change the bounds on the summation in (37), and because ¢() is non-negative, even, and

monotonically decreasing as |i| increases, we see

faGewil? = 3 gi-at Y gli-a) (39)
D SGESS SICR)
< TZ g(i)+§:g(i—1)

= 2ig(i)
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where the right-hand side is no longer a function of x or k. To show ||zx(-)|| is bounded from above we

use the ratio test (Bartle [13] p. 296) and see that

, 4
4+ 1 41
fim D 2 (L) e (39)
i—co  g(1) i— 00 et +te
therefore > 72, ¢(7) is convergent and less then some value By and therefore ||z (-)||* < 2Bs.
To establish a lower bound for ||zx(-)|| we see that because ¢ is always positive and from (38) we

see

lz(x, we)|* > g(~a) > g(~1) = By > 0. (40)

Because By > 0 and both By and By are independent of x and k we can write 0 < By < ||zx(+)|]* < 2Bs.
Using these results and noting that 0 < y; r(x,wy) < 1 and hence yx(x, wy) - yu(x', wy) < n2k and
because # and #’' are bounded below by 1 and bounded above by 1 + n, we see interference has an

upper bound that is not a function of x or £, that is,

n+(14+n)2B; A

2722k &k, w2k (K W)l s, )

||z (x, w |2 By

IfkvwlmH(X’ X/) S

for all x,x’ € [0, 1]™. In similar fashion one can show interference is bounded below by —B.
Now we show that limj_... 7y, w, H(X,X') = 0 almost everywhere. Let 2’ 2 > j—y «% and consider

part of the numerator of (36) we see

i—vz')

( (
[z, wi) ||| ze(x, we)| [ cos 8 = &> — ¢ (42)

1—vZ) )2 1—vz')\2
L (T =2 (14 )
where v 2 25, We consider the case where & # z' and, without loss of generality, we assume z < &’

and break the sum of (42) into three parts and use the closed form of the geometric series. Letting

M2 floor(vz) and M’ 2 floor(vz') gives

&'||zk(x, wi)||[|zk(x", Wi )|| cos 6
o M (iv8)_(imv5") . M e(i—vi") N nv 1
z € € —_— E —_—
= § : Z e(z—vx) e(z—vl’)e(z—vx’)

=1 i=M+1 i=M"+1

20



=3 (e—v(x-l-x’)w + ev(i’_f’)(M’ _ (M 4 1) n 1) n ev(i’-l-i”) (e—Q(M/-l—l) . 6_2(nv+1)))

(1—€?) (1—e2)
2M —2(M'+1) _ _—2(nv+1)
_ o —v(@+E) 2 (e 1) v(z—2") g v(i’—l—i")(e € )
x(e e =) +e (M"—(M+1)+1)+e =

and using M < vz < M + 1 and M’ < vz’ < M’ + 1 leads to

#'l|zx (%, wi)llllze(x, wi)|| cos 0

—u(@'-z) _ —v(z+T) o, —v(z'-z) _ —-2_,-v(2n—z-7')
<o (A T e - 0 1) . )
6 j—

and because 0 < z < z’ < n, one sees that the right hand side of (43) is a sum of elements of the form

C

c1v2e~ Y where ¢q, ¢9, ¢3 are not functions of v and ¢3 > 0. With these conditions we can show

lim ¢jv?e™ " =0 (44)

k—o0

which tells us that when  # &', the numerator of (36) approaches zero as k approaches oo and because

the denominator of (36) is bounded below by a positive constant, By, we see

lim 7, w, m(x,x) =0 almost everywhere. (45)

k—o0
Equation (45) holds because the set § = {(x,x’) € X x X : z = &'} is of measure zero on X' x X
because § C R?"~! defines a hyperplane of lower dimension within X' x X C R?". At this point
we have met the conditions of the Lebesgue Dominated Convergence Theorem : 7y, , H(X,X') is a
sequence of integrable functions on [0, 1]® x [0, 1]”. Because there exists a bound B > 0 such that
1Zs, w, H(X,X)| < Bforall k€N, x,x" €0, 1]" and (45) is an integrable function, we see

T BTy, 0, 16X = Fllim T, 1%, %] = 0 (46)

k—o0

for X = [0, 1]”. Equation (46) implies that there exists a k such that E[Z;, w, m(x,x')*] < € for

arbitrary € > 0 and hence Ly , g y can be made arbitrarily large. A simple scaling and translation
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will allow for arbitrary compact X' C R™. This completes the proof of Theorem 1.
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