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1 IntroductionAlthough the concept of local learning has become familiar in the neural network literature, there is noconsensus on the description of local learning. The only common element found in characterizations oflocal learning is the general understanding that there are links or associations between regions of theinput space and sets of adjustable parameters. Typically, a description of a local learning system issimply based on the characteristics of the particular network structure, rather than some fundamentalde�nition of localization [1, 2, 3, 4]. The literature does not provide a universally accepted descriptionof local learning systems nor does it provide any method for measuring the localization properties of alearning system.Although no rigorous description of local learning is available, the ability of a local learning systemto alleviate interference problems during learning is well accepted. In the case of incremental supervisedlearning, where weights are updated after each presentation of a training sample, interference occurswhen training at one point of the input space a�ects the input/output (I/O) map in an undesirable wayin other areas of the input space. The general problem of interference has been uncovered in variousforms by researchers in many areas [5, 1]. For example, consider a dynamical system after it settles intoa desired trajectory (where only a small portion of the input space is reached). Suppose that withoutnoise, a network function approximator learns the system dynamics, reduces the approximation error,and then ceases learning. In the presence of noise, however, the learning algorithm remains activeand continually memorizes the system dynamics along the trajectory (because the error never goes tozero) even though there is no need to do so. \Global Network Collapse" results, as the other areas ofthe input space (those areas not on the trajectory) gradually unlearn due to interference [1]. Anothervariant of the interference problem is in the classi�cation literature: \Catastrophic Interference" occurswhen the training of a new pattern causes the unlearning of originally trained patterns [5]. These andother interference problems may appear di�erent when embedded in their particular applications butthe root of these problems is the same; learning tends to interfere with previous learning elsewhere inthe input space.Although local networks, in general, lessen the problem of interference, there are trade-o�s to con-sider (see Barto [6] for a nice summary). For example, look-up tables can be thought of as the most2



local of approximation structures because there is a one-to-one relationship between a point in the in-put space and an adjustable parameter. However, look-up tables are obviously inappropriate when thedimension of the problem grows large because the curse of dimensionality [7] causes memory require-ments to become prohibitive; furthermore, look-up tables provide no generalization of untrained points.Finding the correct balance between avoiding interference problems, reducing memory requirements,and enhancing generalization, that is, �nding a balance between local versus non-local networks, is akey problem in network learning.The trade-o�s involved in local learning systems are closely related to the well-known stability-plasticity dilemma [8], namely how to design a learning system that is \plastic" enough to learn newpatterns, and yet is stable enough to remember old learned patterns. Carpenter and Grossberg [9]developed an architectural solution to this question using their adaptive resonance theory (ART),which overcomes the stability-plasticity dilemma by adapting the stored pattern of a category onlywhen the input is su�ciently similar to it.This paper develops analytical tools necessary to measure the localization properties of a network.Networks that are less prone to interference are called local because learning in one region of theinput space causes changes in the I/O map in only a small region local to the point of training. Thislink between interference during the learning process and the localization properties of a network ismade explicit by the incorporation of the learning algorithm into the proposed measures of interferenceand localization. The measure of interference is de�ned by answering the question, \How much doeslearning at x a�ect the I/O map at x0 6= x?" A second measure proposed in this paper quanti�es thedegree of localization of a network, by taking the inverse of the mean squared interference over an inputdomain. According to this de�nition, the I/O map of a local network in one region of the input spaceis less likely to be unlearned when learning moves to another area of the input space. This measure oflocalization incorporates the learning algorithm, which is appropriate because localization is based oninterference, and interference is a side e�ect of learning, which, in turn, is controlled by the learningalgorithm.We use the localization measure on a variety of network structures, assuming a gradient descentlearning algorithm, and show that it agrees with the intuitive interpretation of local networks. A main3



contribution of this paper is a theorem showing that given an arbitrarily large number of weights, asingle-hidden-layer, multi-layer perceptron (MLP) network with a sigmoidal activation function existsthat is as local as desired, that is, on average, learning at one point will a�ect another point to as small adegree as desired. It is also shown that this property does not a�ect the universal-approximation abilityof such a network. Speci�cally it is shown that a single-hidden-layer, sigmoidal MLP can be as localas desired, assuming back-propagation, while simultaneously approximating any continuous functionover a compact set to any degree desired. Therefore, this result provides a theoretical framework fordeveloping networks that are both universal approximators and universal localizers.The paper is organized as follows. In Section 2 we formally de�ne interference and localization. InSection 3 we evaluate the localization properties of radial basis functions (RBF) and multi-layer per-ceptron (MLP) networks with sigmoidal activation functions. We then present a localization theoremthat shows that with a su�cient number of carefully chosen weights, an MLP exists that is as local asdesired. This result is then extended in Section 4 to show that, in addition to the universal-localizationproperty, such an MLP retains its universal-approximation ability. Some concluding remarks are pre-sented in Section 5.2 De�nition of Interference and LocalizationConsider a network whose input/output map is described by y = f(x;w), where y 2 R is the outputof the network, x 2 X is the input, w 2 W is the weight vector, f : X � W ! R is a smooth mapdescribing the network topology, X � Rn is the input domain, and W � Rm is the weight domain.During supervised learning, the objective is to adjust w such that the network approximates a desiredfunction y� = f�(x). We assume the learning algorithm has the form: �w = �H(x;w; e), where �wis the weight change in discrete time, � > 0 is the learning rate constant, H is the direction for weightchange, and e = y � y� is the approximation error.Typically, the localization properties of a network are described by the sensitivity of the networkoutput with respect to weight perturbations. In general, however, this sensitivity function is insu�cientfor characterizing interference and localization because it ignores the learning algorithm, which isresponsible for the weight perturbations. To incorporate the learning algorithm into a measure of4



2

1 2/3

1 1/3

1

2/3

1/3

0
x’x

N
e

tw
o

rk
 O

u
tp

u
t

Network Input

(x,y*)

N

D

f(x,w) before learning
f(x,w+a H(x,w,e))after learning

training sample

Figure 1: Illustrative example of how learning at x may cause interference at x0.interference, consider what happens during one weight update. Given a training input/output sample(x; y�), the current weight w is updated to a new weight w + �H(x;w; e). At the point x, wherethe network is trained, the network map changes from f(x;w) to f(x;w+ �H(x;w; e)). During thisweight update the network I/O map is also a�ected at other points such as x0 6= x. We �rst de�ne ameasure for interference between points which is later used to derive a measure for localization of theoverall network. To formulate a measure of interference at x0 due to learning at x, consider the ratio� of the change in the I/O map at x0 divided by the change in the I/O map at x due to learning at x;that is, � 4= f(x0;w)� f(x0;w+ �H(x;w; e))f(x;w)� f(x;w+ �H(x;w; e)) : (1)To illustrate the derivation of a measure of interference, consider Figure 1 which graphically depicts atypical network's output before and after a weight update. The ratio in (1) is constructed by dividingthe change in the output at x0; which in this example is N = 13 , by the change in output at x; which isD = 23 : The ratio � = N=D = 1=2 is a scalar quantity that represents how much learning at x interfereswith what is known at x0.In general, � is not a useful measure of interference because (i) � depends on an arbitrary learningrate �, (ii) � depends on an arbitrary desired training sample (x; y�) via e, and (iii) � is unde�ned whenthe denominator is zero. To redress the �rst two de�ciencies, we take the limit of � as � approaches zero5



and set e to one. This choice of e does not a�ect lim�!0 � for algorithms such as gradient descent onthe standard quadratic cost function, J = 12e2, (back-propagation) where the resulting weight change is�w = ��erwf(x;w). In this case, the particular choice of e is irrelevant because it can be subsumedinto �, which approaches zero. Finally, if the lim�!0 �je=1 does not exist, we de�ne interference tobe zero because (the attempt at) learning at x does not a�ect the output at x0. Based on the abovemodi�cations, a general de�nition of interference is given.De�nition 1 Let f represent a network I/O map with weight vector w which is updated according toa generic learning algorithm �w = �H(x;w; e). Then the interference (with unit error) at x0 due tolearning at x is denoted by If;w;H(x;x0) and is de�ned asIf;w;H(x;x0) 4= 8><>: lim�!0 f(x0;w)�f(x0;w+�H(x;w;1))f(x;w)�f(x;w+�H(x;w;1)) if limit exists0 otherwise (2)Interference, according to this de�nition, is a ratio of the change in the (network) output at x0 dividedby the change in the output at x due to learning at x.Therefore, this de�nition provides a measure of the degree to which training at an input point xinuences the input/output function of the network at other points x0. In general, the interferencemeasure I can take any real value. In the case that I is negative, it represents opposite signs for thechange in the output at x and x0. It is worth noting that, in general, If;w;H(x;x0) 6= If;w;H(x0;x)indicating a non-symmetric behavior between learning at x and learning at x0. As expected, in thespecial case that x = x0 the interference If;w;H(x;x0) = 1.For any network function approximator, f , that has a well de�ned gradient (with respect to w)everywhere in X , applying L'Hospital's rule to (2) giveslim�!0 f(x0;w)� f(x0;w+ �H(x;w; 1))f(x;w)� f(x;w+ �H(x;w; 1)) = lim�!0 @@� [f(x0;w)� f(x0;w+ �H(x;w; 1))]@@� [f(x;w)� f(x;w+ �H(x;w; 1))]= �rwf(x0;w) �H(x;w; 1)rwf(x;w) �H(x;w; 1)� (3)where rwf(x;w) is the gradient vector of f(x;w) with respect to w, leading to an equivalent yet6



simpler form of the interference measure given byIf;w;H(x;x0) 4= 8><>: �rwf(x0;w)�H(x;w;1)rwf(x;w)�H(x;w;1)� if rwf(x;w) �H(x;w; 1) 6= 00 otherwise. (4)In the special case that the learning algorithm is gradient descent applied to the standard quadraticcost function (back-propagation), H(x;w; e) = �erwf(x;w). Hence, in this case (4) reduces toIf;w;H(x;x0) = 8><>: rwf(x;w)�rwf(x0;w)krwf(x;w)k2 if rwf(x;w) 6= 00 otherwise. (5)The above de�nition of interference measure, given equivalently by (2) and (4), provides the underlyingframework for de�ning a measure of localization, which is done next. Speci�cally, interference is de�nedas a function of two points x;x0 2 X , while localization is de�ned over the entire input domain X . Ade�nition for network localization, given below, provides a measure of how immune a network is tointerference.De�nition 2 Let f represent a network I/O map with weight vector w which is updated according tothe learning algorithm �w = �H(x;w; e). Then the localization of the network over an input domainX is denoted by Lf;w;H;X and is de�ned asLf;w;H;X 4= 1=�If;w;H;X (6)where �If;w;H;X 4= E[If;w;H(x;x0)2] and E[�] is the expected value over all x and x0 chosen from someprobability density function (pdf) over the input domain X .If the pdf of both x and x0 is uniformly distributed over X , (6) becomesLf;w;H;X = �ZXZX If;w;H(x;x0)2dxdx0��1 : (7)In general, the localization measure Lf;w;H;X can take any positive real value. Large values ofLf;w;H;X indicate the network is more local over the domain X . This de�nition transforms a measure7



of interference (between two points in the input domain) into a measure of localization (of a networkover the entire input domain). The interference and localization measures of di�erent networks arefurther illustrated below by speci�c examples. To simplify the analysis, in the rest of the paper weassume that the algorithm H(x;w; e) is gradient descent applied to the quadratic cost function.3 Application of the Theory of LocalizationThe previous section developed interference and localization measures based on the learning algorithm.But it should be emphasized that these measures are also a function of the network architecture andweights. We demonstrate this with the following simple example which con�rms our intuition thatdecreasing the widths (dilation) of a Gaussian RBF increases its degree of localization. This examplealso provides a better understanding of the de�nition of interference given in (2).Example 1: Consider a single-input, single-output RBF network with 8 nodes, each of which has anadjustable amplitude ai, inverted width bi, and center ci. The learning algorithm is gradient descenton the quadratic error surface, and the network has the formf(x;w) = 8Xi=1 aie�((x�ci)bi)2 (8)where w = [a1 � � �a8 b1 � � �b8 c1 � � �c8]T , and ai = 1, bi = 1, ci = i=7, for i 2 f0; � � �7g: The centersare equally spaced along the input domain X = [0; 1]. The plot of If;w;H(x; x0) shown in Figure2(a) illustrates the localization properties of this network, with If;w;H(x; x0) = 1 when x = x0 andIf;w;H(x; x0) < 1 when x 6= x0. Now we consider a new weight vector�w = [a1 � � �a8 2b1 � � �2b8 c1 � � �c8]T (9)whose widths are one-half the size of those in w. As can be seen from Figure 2(b), the network exhibitsmore local properties since the average squared If; �w;H(x; x0) is less over the domain X . By computingthe localization measure for each network of the form (8), with w and �w respectively, a comparison ofLf;w;H;X = 1:475 and Lf; �w;H;X = 2:298 reveals that f(x; �w) is more local. �Although these results are not surprising, they do lead to an interesting question: Since the weight8
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Figure 2: Interference for an eight-node RBF with (a) wide widths and (b) narrow widths.
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Figure 3: Interference for an eight-node, sigmoidal, single-hidden-layer MLP with (a) non-local and (b)local weight con�gurations. 9



con�guration a�ects how local an RBF is, would the same be true of a single-hidden-layer MLP witha sigmoidal activation function? The following example shows that, indeed, di�erent weight con�gura-tions produce di�erent degrees of localization.Example 2: Consider a single-input, single-output eight-node, single-hidden-layer MLP with sig-moidal activation functions whose network architecture is given asf(x;w) = 8Xi=1 ai(1 + eci�bix)�1 (10)where w = [a1 � � �a8 b1 � � �b8 c1 � � �c8]T , and ai = 7, bi = :7, ci = i=7, for i 2 f0; � � �7g: Figure 3(a) plotsIf;w;H(x; x0) showing poor local properties as can be seen by noting that interference is greater than.4 over the entire domain. Using a new weight vector,�w = [a1 � � �a8 14b1 � � �14b8 14c1 � � �14c8]T (11)does indeed increase the network's localization, producing Lf;w;H;X = 1:059 and Lf; �w;H;X = 2:362. Infact, f(x; �w) is more local than the corresponding local RBF network shown in Example 1. �Although the motivation provided for this example was to show that the localization propertiesof sigmoidal MLPs are dependent on the weights, the example raises a new question: How local cansigmoidal MLPs be? The following theorem shows that sigmoidal MLPs can be arbitrarily local byproving analytically that given a su�ciently large number of weights, a single-hidden-layer MLP existsthat is arbitrarily local. The theorem assumes the back-propagation algorithm on an MLP given byf(x;w) = NXi=1 ai �1 + eci�Pnj=1 bijxj��1 (12)whose weight vector is w = [aT bT cT ]T (13)where a = [a1 � � �aN ]T , c = [c1 � � �cN ]T , b = [b1 � � �bN ]T and bi = [bi1 � � �bin] for i = 1; ::; N and theinput, x = [x1 � � �xn]T is in the domain X .Theorem 1 (Universal Localization) Let X be a compact subset of Rn and H = �erwf(x;w). Then10



for arbitrary M > 0, there exist an integer N and real weights given by (13) as ai; ci(i = 1; :::; N), andbij(i = 1; :::; N)(j = 1; :::; n); such that (12) satis�esLf;w;H;X > M: (14)The proof is given in the Appendix.To illustrate how a network's localization measure is inuenced, we compare interference in theRBF and MLP networks used in Examples 1 and 2, again assuming the back-propagation learningalgorithm. Using the RBF network, we �nd the partial derivatives of the output with respect to arepresentative amplitude weight ai, inverted width weight bi, and center weight ci as shown in Figure4. According to equation (5) and by continuity of f , if jx � x0j is small then If;w;H(x; x0) � 1. Ifjx � x0j is large then it is not possible for corresponding elements of the two vectors rwf(x;w) andrwf(x0;w) to both be large, which can be seen by noting that all three plots of Figure 4 go to zeroas x and x0 separate, therefore rwf(x;w) � rwf(x0;w) will be small. The magnitude of rwf(x;w)will not be near zero, however, if for every x there is a corresponding element in rwf(x;w) whosemagnitude is large, a reasonable assumption for a useful local network1. Therefore, in this analysis of(5), the numerator will be small compared to the denominator when jx� x0j is large, producing a localnetwork. For basis functions whose widths are small we see according to (5) interference is small andthat a small perturbation in a single weight a�ects only a small portion of the I/O map. As widthweights are decreased one can see how an RBF network becomes more local as shown in Example 1.Repeating this analysis for single-hidden-layer MLPs leads to Figure 5. Figure 5(a) shows non-localproperties because it is possible for rwf(x;w) � rwf(x0;w) to be large even when x and x0 are farfrom one another. The functions shown in Figure 5(b) and 5(c), however, vanish rapidly at positiveand negative in�nity and therefore exhibit local properties (see Sjoberg et al. [3]). The networkarchitecture and weights help determine the interference that occurs and hence play an important rolein determining network localization.1Baker and Farrell [4] use the term \coverage" for this condition.11
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Figure 4: Radial Basis Function partial derivatives of the output f =PNi=1 aie�((x�ci)bi)2 with respectto an amplitude ai, inverted width bi, and center ci.12
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Figure 5: Sigmoidal MLP network partial derivatives of the output f = PNi=1 ai(1 + eci�bix)�1 withrespect to an amplitude ai, steepness (at the center) bi, and center ci.13



A special case occurs for linearly parameterized networks, that is, networks whose input/outputcharacteristics are expressed as f(x;w) = w � �(x); (15)where � : X ! Rm is the basis vector. Examples of linearly parameterized approximation structuresinclude polynomials and RBFs with �xed centers and widths. For linearly parameterized networks,rwf(x;w) = �(x) which is independent of the weight vector w. Therefore, the measure of interferencegiven by (5) becomes If;w;H(x;x0) = 8><>: �(x)��(x0)k�(x)k2 if �(x) 6= 00 otherwise (16)which is also independent of the weights. Clearly, the localization measure will also be independent ofw, implying that for linearly parameterized networks modifying its weights will not a�ect its localizationproperties. For example, an RBF network with �xed centers and widths cannot become more or lesslocal by changing the amplitude weights.4 Localization and ApproximationIn the preceding section only the local properties of a network were discussed; theorem 1 only ad-dresses the degree of localization found in the network. Because these networks are operating asfunction approximators it is imperative that the issue of approximation be addressed in conjunctionwith localization. This leads us to a new question, \Does there exist a single-hidden-layer MLP net-work that is arbitrarily local and approximates any smooth function arbitrarily closely in a compactset?" The following theorem combines the universal-localization theorem of Section 3 and well-known,universal-approximation results of single-hidden-layer sigmoidal MLPs. (See, for example, [10, 11, 12]).Theorem 2 Let X be a compact subset of Rn, H = �erwh(x;w), and g�(x) be a real valued con-tinuous function on X . Then for arbitrary � > 0;M > 0, there exist an integer N and real con-stants given by (13) as ai; ci(i = 1; :::; N); and bij(i = 1; :::; N)(j = 1; :::; n); such that h(x;w) =14



PNi=1 ai�1 + eci�Pnj=1 bijxj��1 satis�esmaxx2X jh(x;w)� g�(x)j < � (17)and Lh;w;H;X > M: (18)Proof. This proof is a combination of the proof of Theorem 1 and a universal-approximation theoremin [10], which says that given a real-valued continuous function g�(x) on X , then for arbitrary � > 0there exist a number of nodes N , and weights w, such that g(x;w) = PNi=1 ai(1 + eci�Pnj=1 bijxj)�1satis�es maxx2X jg(x;w)� g�(x))j < �. Using this weight vector w and function g(x;w), we constructa sequence (indexed by k) of functionshk(x; �wk) 4= fk(x;wk)� fk(x;w0k) + g(x;w); (19)where �wk 4= [wkTw0kTwT ]T , fk , andwk are de�ned in (26) and (34). Then interference, Ihk; �wk ;H(x;x0),is given by rwkfk(x;wk) � rwkfk(x0;wk) +rw0kfk(x;w0k) � rw0kfk(x0;w0k) +rwg(x;w) � rwg(x0;w)rwkfk(x;wk) � rwkfk(x;wk) +rw0kfk(x;w0k) � rw0kfk(x;w0k) +rwg(x;w) � rwg(x;w) !(20)If we then set w0k = wk we see the function hk(x; �wk) has the same I/O map as g(x;w) for all k whichproves the universal-approximation condition (17) and because rwkfk(x;wk) = rw0kfk(x;w0k), (20)reduces to Ihk ; �wk;H(x;x0) = �2rwkfk(x;wk) � rwkfk(x0;wk) +rwg(x;w) � rwg(x0;w)2rwkfk(x;wk) � rwkfk(x;wk) +rwg(x;w) � rwg(x;w) � (21)Because (21) is similar to (27) we borrow from the proof of Theorem 1. The denominator of (27) equalsthe denominator of (35), which approaches in�nity as k approaches in�nity (as can be seen by noting15



that x̂kzk(x;wk)k2 is bounded below by B1 as shown using (40) and the de�nition of x̂). Thereforelimk!1 2rwkfk(x;wk) � rwkfk(x;wk) =1 (22)and because rwg(x;w) and rwg(x0;w) are positive and independent of k, we see thatlimk!1 rwg(x;w) � rwg(x0;w)2rwkfk(x;wk) � rwkfk(x;wk) = 0: (23)Using (27) and (45) we see thatlimk!1 Ihk ; �wk ;H(x;x0) = 0 almost everywhere. (24)Because Ifk;wk ;H(x;x0) is bounded via (41) one can see that (21) is also bounded. Using the LebesgueDominated Convergence Theorem (as was done in the appendix) one can showlimk!1Lhk; �wk ;H;X =1: (25)�5 ConclusionThe measures of localization and interference proposed in this paper provide a framework of networklocalization based on the ability of the network to deter interference during learning. This frameworkallows us to see that since di�erent learning algorithms give di�erent degrees of interference in anetwork, then a measure of localization should incorporate the learning algorithm as well as the networkarchitecture and weights. The proposed measure of localization can be applied to any continuousapproximating structure of the form f(x;w) and any learning algorithm of the form�w = �H(x;w; e),where x is the input vector, w represents the adjustable weights and rwf(x;w) is de�ned everywhereon the input domain.We show that this framework is consistent with other descriptions of local learning in the litera-16



ture. When applied to radial basis function networks it delivers results consistent with the literature'sheuristic understanding of local networks. We also apply these measures to sigmoidal networks andshow, for back-propagation as the learning algorithm, that a single-hidden-layer sigmoidal network canapproximate any desired continuous function and be arbitrarily local, provided an arbitrarily largenumber of weights are available. This result may give designers con�dence to use MLPs for applica-tions previously delegated to networks whose localization property is easier to visualize, such as RBFs.Applying this localization theory to other network-architecture/learning-algorithm combinations mayuncover other useful localization properties.Since interference is, in general, a function of the weight vector, it may be incorporated into acost function, leading to new learning algorithms that, in addition to approximation, optimize thelocalization properties of a network. Although the number of weights and the degree of localizationare not directly related, we can say that the number of weights is related to the potential for a networkto be local. A network's extra degrees of freedom (in the form of extra weights) may be used to makea network more local, while simultaneously approximating a desired function. In certain applicationswhere interference causes problems, this learning algorithm may decrease training times. Exploringsuch algorithms is an area for future research.Appendix: Proof of Theorem 1We prove Theorem 1 by construction. A sequence of sigmoidal networks based on (12)fk(x;wk) = NkXi=1 ai;k �1 + eci;k�Pnj=1 bij;kxj��1 (26)is used to generate a sequence of interferences using (5)Ifk;wk;H(x;x0) = �rwkfk(x;wk) � rwkfk(x0;wk)rwkfk(x;wk) � rwkfk(x;wk) � (27)where H = �erwf(x;w), that is, the learning algorithm is back-propagation. We assume withoutloss of generality that the ratio on the right-hand-side of (27) exists. If the ratio does not exist,17



then according to (5), Ifk ;wk ;H(x;x0) is zero and the arguments of this proof remain valid. With anappropriate choice of wk and Nk, we show the following two statements:1. Ifk;wk;H(x;x0) is bounded for all k 2 N; x;x0 2 [0; 1]n.2. The limit of Ifk;wk;H(x;x0) as k approaches in�nity is zero almost everywhere.Expanding (27) allows us to write Ifk;wk ;H(x;x0) asPNki=1 h @@ai;k fk(x;wk) @@ai;k fk(x0;wk) +Pnj=1 @@bij;k fk(x;wk) @@bij;k fk(x0;wk) + @@ci;k fk(x;wk) @@ci;k fk(x0;wk)iPNki=1 @@ai;k fk(x;wk)2 +PNki=1Pnj=1 @@bij;k fk(x;wk)2 +PNki=1 @@ci;k fk(x;wk)2and by de�ning yi;k(x;wk) 4= �1 + eci;k�Pnj=1 bij;kxj��1 (28)as the output of the ith node in the hidden layer, we see that we can write Ifk ;wk;H(x;x0) asPNki=1 hyi;k(x;wk)yi;k(x0;wk) + a2i;k(1 +Pnj=1 xjx0j)yi;k(x;wk)yi;k(x0;wk)(1� yi;k(x;wk))(1� yi;k(x0;wk))iPNki=1 hyi;k(x;wk)2 + a2i;k(1 +Pnj=1 xj2)yi;k(x;wk)2(1� yi;k(x;wk))2i :(29)Simplifying further by letting zi;k(x;wk) 4= yi;k(x;wk)(1� yi;k(x;wk)); (30)x̂0 4= 1+ nXj=1 xjx0j ; (31)and x̂ 4= 1 + nXj=1 xj2; (32)we see Ifk ;wk;H(x;x0) = PNki=1 hyi;k(x;wk)yi;k(x0;wk) + a2i;kx̂0zi;k(x;wk)zi;k(x0;wk)iPNki=1 hyi;k(x;wk)2 + a2i;kx̂zi;k(x;wk)2i : (33)18



Let the weights, wk, and number of nodes for our constructed sequence of sigmoidal networks beselected as ai;k = 2k; bij;k = 2k; ci;k = i; and Nk = n2k : (34)Letting zk(x;wk) = [z1;k(x;wk); :::; zNk;k(x;wk)]T and yk(x;wk) = [y1;k(x;wk); :::; yNk;k(x;wk)]T , werecall that zk(x;wk) � zk(x0;wk) = kzk(x;wk)k kzk(x0;wk)k cos �, where � is the angle between thevectors zk(x;wk) and zk(x0;wk). Therefore we can writeIfk;wk;H(x;x0) = yk(x;wk) � yk(x0;wk) + 22kx̂0kzk(x;wk)kkzk(x0;wk)k cos �yk(x;wk) � yk(x;wk) + 22kx̂kzk(x;wk)k2 (35)= 2�2kyk(x;wk) � yk(x0;wk) + x̂0kzk(x;wk)kkzk(x0;wk)k cos �2�2kyk(x;wk) � yk(x;wk) + x̂kzk(x;wk)k2 (36)In order to show Ifk ;wk;H(x;x0) is bounded, we �rst �nd an upper and lower bound on kzk(�)k.Using weight values given in (34) we see yi;k(x;wk) = [1+e(i�2k �x)]�1 where �x 4=Pnj=1 xj . Substitutingyi;k(x;wk) into (30) and letting g(s) 4= (1 + es)�2[1� (1 + es)�1]2 = e2s(1 + es)�4 giveskzk(x;wk)k2 = n2kXi=1 g(i� 2k�x): (37)Let ik 4= floor(2k�x), then a 4= 2k�x� ik has the property that 0 � a < 1. Using the change of variables�i = i� ik, to change the bounds on the summation in (37), and because g(i) is non-negative, even, andmonotonically decreasing as jij increases, we seekzk(x;wk)k2 = 0X�i=1�ik g(�i� a) + n2k�ikX�i=1 g(�i� a) (38)< 0X�i=1�ik g(�i) + n2k�ikX�i=1 g(�i� 1)< 0X�i=�1 g(�i) + 1X�i=1 g(�i� 1)= 2 1X�i=0 g(�i)19



where the right-hand side is no longer a function of x or k. To show kzk(�)k is bounded from above weuse the ratio test (Bartle [13] p. 296) and see thatlimi!1 g(i+ 1)g(i) = limi!1 e2  e�i + 1e�i + e!4 = e�2 < 1 (39)therefore P1i=0 g(i) is convergent and less then some value B2 and therefore kzk(�)k2 < 2B2.To establish a lower bound for kzk(�)k we see that because g is always positive and from (38) wesee kzk(x;wk)k2 � g(�a) � g(�1) 4= B1 > 0: (40)Because B1 > 0 and both B1 and B2 are independent of x and k we can write 0 < B1 � kzk(�)k2 � 2B2.Using these results and noting that 0 � yi;k(x;wk) � 1 and hence yk(x;wk) � yk(x0;wk) � n2k andbecause x̂ and x̂0 are bounded below by 1 and bounded above by 1 + n, we see interference has anupper bound that is not a function of x or k, that is,Ifk;wk;H(x;x0) � 2�2kn2k + x̂0kzk(x;wk)kkzk(x0;wk)kx̂kzk(x;wk)k2 � n+ (1 + n)2B2B1 4= B (41)for all x;x0 2 [0; 1]n. In similar fashion one can show interference is bounded below by �B.Now we show that limk!1 Ifk;wk;H(x;x0) = 0 almost everywhere. Let �x0 4= Pnj=1 x0j and considerpart of the numerator of (36) we seex̂0kzk(x;wk)kkzk(x0;wk)k cos� = x̂0 nvXi=1 e(i�v�x)(1 + e(i�v�x))2 e(i�v�x0)(1 + e(i�v�x0))2 (42)where v 4= 2k. We consider the case where �x 6= �x0 and, without loss of generality, we assume �x < �x0and break the sum of (42) into three parts and use the closed form of the geometric series. LettingM 4= floor(v�x) and M 0 4= floor(v�x0) givesx̂0kzk(x;wk)kkzk(x0;wk)k cos �� x̂00@ MXi=1 e(i�v�x)e(i�v�x0) + M 0Xi=M+1 e(i�v�x0)e(i�v�x) + nvXi=M 0+1 1e(i�v�x)e(i�v�x0)1A20



= x̂0 e�v(�x+�x0) (e2 � e2(M+1))(1� e2) + ev(�x��x0)(M 0 � (M + 1) + 1) + ev(�x+�x0) (e�2(M 0+1) � e�2(nv+1))(1� e�2) != x̂0 e�v(�x+�x0)e2 (e2M � 1)(e2 � 1) + ev(�x��x0)(M 0 � (M + 1) + 1) + ev(�x+�x0) (e�2(M 0+1) � e�2(nv+1))(1� e�2) !and using M � v�x �M + 1 and M 0 � v�x0 �M 0 + 1 leads tox̂0kzk(x;wk)kkzk(x0;wk)k cos �� x̂0 e2 e�v(�x0��x) � e�v(�x+�x0)(e2 � 1) + e�v(�x0��x)(v(�x0� �x) + 1) + (e�v(�x0��x) � e�2e�v(2n��x��x0))(1� e�2) !(43)and because 0 � �x < �x0 � n, one sees that the right hand side of (43) is a sum of elements of the formc1vc2e�c3v where c1, c2, c3 are not functions of v and c3 > 0. With these conditions we can showlimk!1 c1vc2e�c3v = 0 (44)which tells us that when �x 6= �x0, the numerator of (36) approaches zero as k approaches1 and becausethe denominator of (36) is bounded below by a positive constant, B1, we seelimk!1 Ifk ;wk ;H(x;x0) = 0 almost everywhere. (45)Equation (45) holds because the set S = f(x;x0) 2 X � X : �x = �x0g is of measure zero on X � Xbecause S � R2n�1 de�nes a hyperplane of lower dimension within X � X � R2n. At this pointwe have met the conditions of the Lebesgue Dominated Convergence Theorem : Ifk;wk;H(x;x0) is asequence of integrable functions on [0; 1]n � [0; 1]n. Because there exists a bound B > 0 such thatjIfk;wk;H(x;x0)j � B for all k 2 N; x;x0 2 [0; 1]n and (45) is an integrable function, we seelimk!1E[Ifk;wk;H(x;x0)2] = E[ limk!1Ifk ;wk ;H(x;x0)2] = 0 (46)for X = [0; 1]n. Equation (46) implies that there exists a k such that E[Ifk;wk ;H(x;x0)2] < � forarbitrary � > 0 and hence Lfk;wk;H;X can be made arbitrarily large. A simple scaling and translation21
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