
Reinforcement Learning

Through Gradient Descent
Leemon C. Baird III

May 14, 1999
CMU-CS-99-132

School of Computer Science
Carnegie Mellon Universi9ty

Pittsburgh, PA 15213

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

Thesis committee:
Andrew Moore (chair)

Tom Mitchell
Scott Fahlman

Leslie Kaelbling, Brown University

Copyright © 1999, Leemon C. Baird III

This research was supported in part by the U.S. Air Force, including the Department of Computer Science,
U.S. Air Force Academy, and Task 2312R102 of the Life and Environmental Sciences Directorate of the
United States Office of Scientific Research. The views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Air Force Academy, U.S. Air Force, or the U.S. government

Keywords: Reinforcement learning, machine learning, gradient descent, convergence,
backpropagation, backprop, function approximators, neural networks, Q-learning,
TD(lambda), temporal difference learning, value function approximation, evaluation
functions, dynamic programming, advantage learning, residual algorithms, VAPS

1

Abstract

Reinforcement learning is often done using parameterized function approximators to store
value functions. Algorithms are typically developed for lookup tables, and then applied
to function approximators by using backpropagation. This can lead to algorithms
diverging on very small, simple MDPs and Markov chains, even with linear function
approximators and epoch-wise training. These algorithms are also very difficult to
analyze, and difficult to combine with other algorithms.

A series of new families of algorithms are derived based on stochastic gradient descent.
Since they are derived from first principles with function approximators in mind, they
have guaranteed convergence to local minima, even on general nonlinear function
approximators. For both residual algorithms and VAPS algorithms, it is possible to take
any of the standard algorithms in the field, such as Q-learning or SARSA or value
iteration, and rederive a new form of it with provable convergence.

In addition to better convergence properties, it is shown how gradient descent allows an
inelegant, inconvenient algorithm like Advantage updating to be converted into a much
simpler and more easily analyzed algorithm like Advantage learning. In this case that is
very useful, since Advantages can be learned thousands of times faster than Q values for
continuous-time problems. In this case, there are significant practical benefits of using
gradient-descent-based techniques.

In addition to improving both the theory and practice of existing types of algorithms, the
gradient-descent approach makes it possible to create entirely new classes of
reinforcement-learning algorithms. VAPS algorithms can be derived that ignore values
altogether, and simply learn good policies directly. One hallmark of gradient descent is
the ease with which different algorithms can be combined, and this is a prime example.
A single VAPS algorithm can both learn to make its value function satisfy the Bellman
equation, and also learn to improve the implied policy directly. Two entirely different
approaches to reinforcement learning can be combined into a single algorithm, with a
single function approximator with a single output.

Simulations are presented that show that for certain problems, there are significant
advantages for Advantage learning over Q-learning, residual algorithms over direct, and
combinations of values and policy search over either alone. It appears that gradient
descent is a powerful unifying concept for the field of reinforcement learning, with
substantial theoretical and practical value.

2

3

Acknowledgements

I thank Andrew Moore, my advisor, for great discussions, stimulating ideas, and a valued
friendship. I thank Leslie Kaelbling, Tom Mitchell, and Scott Fahlman for agreeing to be
on my committee, and for their insights and help. It was great being here with Kwun,
Weng-Keen, Geoff, Scott, Remi, and Jeff. Thanks. I'd like to thank CMU for providing a
fantastic environment for doing research. I've greatly enjoyed the last three years. A big
thanks to my friends Mance, Scott, Brian, Bill, Don and Cheryl, and especially for the
support and help from my family, from my church, and from the Lord.

This research was supported in part by the U.S. Air Force, including the Department of
Computer Science, U.S. Air Force Academy, and Task 2312R102 of the Life and
Environmental Sciences Directorate of the United States Office of Scientific Research.
The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the
U.S. Air Force Academy, U.S. Air Force, or the U.S. government

4

5

Contents

Abstract 1

Acknowledgements 3

Contents 5

Figures 9

Tables 11

1 Introduction 13

2 Background 15

2.1 RL Basics 15

2.1.1 Markov Chains 15

2.1.2 MDPs 16

2.1.3 POMDPs 17

2.1.4 Pure Policy Search 18

2.1.5 Dynamic Programming 19

2.2 Reinforcement-Learning Algorithms 20

2.2.1 Actor-Critic 20

2.2.2 Q-learning 22

2.2.3 SARSA 22

3 Gradient Descent 24

3.1 Gradient Descent 24

3.2 Incremental Gradient Descent 24

3.3 Stochastic Gradient Descent 25

3.4 Unbiased Estimators 25

3.5 Known Results for Error Backpropagation 26

6

4 Residual Algorithms: Guaranteed Convergence with Function Approximators 32

4.1 Introduction 32

4.2 Direct Algorithms 33

4.3 Residual Gradient Algorithms 37

4.4 Residual Algorithms 39

4.5 Stochastic Markov Chains 43

4.6 Extending from Markov Chains to MDPs 44

4.7 Residual Algorithms 44

4.8 Simulation Results 46

4.9 Summary 47

5 Advantage learning: Learning with Small Time Steps 48

5.1 Introduction 48

5.2 Background 49

5.2.1 Advantage updating 49

5.2.2 Advantage learning 49

5.3 Reinforcement Learning with Continuous States 53

5.3.1 Direct Algorithms 53

5.3.2 Residual Gradient Algorithms 54

5.4 Differential Games 55

5.5 Simulation of the Game 55

5.5.1 Advantage learning 55

5.5.2 Game Definition 56

5.6 Results 57

5.7 Summary 59

6 VAPS: Value and Policy Search, and Guaranteed Convergence for Greedy Exploration60

7

6.1 Convergence Results 60

6.2 Derivation of the VAPS equation 63

6.3 Instantiating the VAPS Algorithm 66

6.3.1 Reducing Mean Squared Residual Per Trial 66

6.3.2 Policy-Search and Value-Based Learning 68

6.4 Summary 69

7 Conclusion 70

7.1 Contributions 70

7.2 Future Work 71

References 72

8

9

Figures

Figure 2.1.An MDP where pure policy search does poorly ... 18

Figure 2.2. An MDP where actor-critic can fail to converge ... 21

Figure 3.1. The g function used for smoothing. Shown with ε=1.................................. 29

Figure 4.1. The 2-state problem for value iteration, and a plot of the weight vs. time.
R=0 everywhere and γ=0.9. The weight starts at 0.1, and grows exponentially, even
with batch training, and even with arbitrarily-small learning rates........................... 34

Figure 4.2. The 7-state star problem for value iteration, and a plot of the values and
weights spiraling out to infinity, where all weights started at 0.1. By symmetry,
weights 1 through 6 are always identical. R=0 everywhere and γ=0.9...................... 35

Figure 4.3. The 11-state star problem for value iteration, where all weights started at 0.1
except w0, which started at 1.0. R=0 everywhere and γ=0.9. 36

Figure 4.4.The star problem for Q-learning. R=0 everywhere and γ=0.9......................... 37

Figure 4.5. The hall problem. R=1 in the absorbing state, and zero everywhere else.
γ=0.9. ... 39

Figure 4.6. Epoch-wise weight-change vectors for direct and residual gradient algorithms
... 40

Figure 4.7. Weight-change vectors for direct, residual gradient, and residual algorithms.
... 40

Figure 4.8. Simulation results for two MDPs... 47

Figure 5.1. Comparison of Advantages (black) to Q values (white) in the case that
1/(k∆t)=10. The dotted line in each state represents the value of the state, which
equals both the maximum Q value and the maximum Advantage. Each A is 10 times
as far from V as the corresponding Q. ... 51

Figure 5.2. Advantages allow learning whose speed is independent of the step size, while
Q learning learns much slower for small step sizes. ... 53

Figure 5.3. The first snapshot (pictures taken of the actual simulator) demonstrates the
missile leading the plane and, in the second snapshot, ultimately hitting the plane. 58

Figure 5.4. The first snapshot demonstrates the ability of the plane to survive indefinitely
by flying in continuous circles within the missile's turn radius. The second snapshot

10

demonstrates the learned behavior of the plane to turn toward the missile to increase
the distance between the two in the long term, a tactic used by pilots...................... 58

Figure 5.5: φ comparison. Final Bellman error after using various values of the fixed φ
(solid), or using the adaptive φ (dotted). ... 59

Figure 6.1. A POMDP and the number of trials needed to learn it vs. β. A combination of
policy-search and value-based RL outperforms either alone. 68

Figure 7.1. Contributions of this thesis (all but the dark boxes), and how each built on
one or two previous ones. Everything ultimately is built on gradient descent. 71

11

Tables

Table 4.1. Four reinforcement learning algorithms, the counterpart of the Bellman
equation for each, and each of the corresponding residual algorithms. The fourth,
Advantage learning, is discussed in chapter 5... 46

Table 6.1. Current convergence results for incremental, value-based RL algorithms.
Residual algorithms changed every X in the first two columns to √. The new VAPS
form of the algorithms changes every X to a √. .. 63

Table 6.2. The general VAPS algorithm (left), and several instantiations of it (right).
This single algorithm includes both value-based and policy-search approaches and
their combination, and gives guaranteed convergence in every case. 65

12

13

1 Introduction

Reinforcement learning is a field that can address a wide range of important problems.

Optimal control, schedule optimization, zero-sum two-player games, and language
learning are all problems that can be addressed using reinforcement-learning algorithms.

There are still a number of very basic open questions in reinforcement learning, however.
How can we use function approximators and still guarantee convergence? How can we
guarantee convergence for these algorithms when there is hidden state, or when
exploration changes during learning? How can we make algorithms like Q-learning work
when time is continuous or the time steps are small? Are value functions good, or should
we just directly search in policy space?

These are important questions that span the field. They deal with everything from low-
level details like finding maxima, to high-level concepts like whether we should be even
using dynamic programming at all. This thesis will suggest a unified approach to all of
these problems: gradient descent. It will be shown that using gradient descent, many of
the algorithms that have grown piecemeal over the last few years can be modified to have
a simple theoretical basis, and solve many of the above problems in the process. These
properties will be shown analytically, and also demonstrated empirically on a variety of
simple problems.

Chapter 2 introduces reinforcement learning, Markov Decision Processes, and dynamic
programming. Those familiar with reinforcement learning may want to skip that chapter.
The later chapters briefly define some of the terms again, to aid in selective reading.

Chapter 3 reviews the relevant known results for incremental and stochastic gradient
descent, and describes how these theorems can be made to apply to the algorithms
proposed in this thesis. That chapter is of theoretical interest, but is not needed to
understand the algorithms proposed. The proposed algorithms are said to converge "in
the same sense that backpropagation converges", and that chapter explains what this
means, and how it can be proved. It also explains why two independent samples are
necessary for convergence to a local optimum, but not for convergence in general.

Chapters 4, 5, and 6 present the three main algorithms: Residual algorithms, Advantage
learning, and VAPS. These chapters are designed so they can be read independently if
there is one algorithm of particular interest. Chapters 5 and 6 both use the ideas from
chapter 4, and all three are based on the theory presented in chapter 3, and use the
standard terminology defined in chapter 2.

Chapter 4 describes residual algorithms. This is an approach to creating pure gradient-
descent algorithms (called residual gradient algorithms), and then extending them to a
larger set of algorithms that converge faster in practice (called residual algorithms).
Chapters 5 and 6 both describe residual algorithms, as proposed in chapter 4.

14

Chapter 5 describes Advantage learning, which allows reinforcement learning with
function approximation to work for problems in continuous time or with very small time
steps. For MDPs with continuous time (or small time steps) where Q functions are
preferable to value functions, this algorithm can be of great practical use. It is also a
residual algorithm as defined in chapter 4, so it has those convergence properties as well.

Chapter 6 describes VAPS, which allows the exploration policy to change during learning,
while still giving guaranteed convergence. In addition, it allows pure search in policy
space, learning policies directly without any kind of value function, and even allows the
two approaches to be combined. VAPS is a generalization of residual algorithms, as
described in chapter 4, and achieves the good theoretical convergence properties
described in chapter 3. The VAPS form of several different algorithms is given,
including the Advantage learning algorithm from chapter 5. Chapter 6 therefore ties
together all the major themes of this thesis. If there is only time to read one chapter, this
might be the best one to read.

Chapter 7 is a brief summary and conclusion.

15

2 Background

This chapter gives an overview of reinforcement learning, Markov Decision Processes
and dynamic programming. It defines the standard terminology of the field, and the
notation to be used throughout this thesis.

 2.1 RL Basics
Reinforcement learning is the problem of learning to make decisions that maximize
rewards or minimize costs over a period of time. The environment gives an overall,
scalar reinforcement signal, but doesn't tell the learning system what the correct decisions
would have been. The learning system therefore has much less information than in
supervised learning, where the environment asks questions, and then tells the learning
system what the right answers to those questions would have been. Reinforcement
learning does use more information than unsupervised learning, where the learning
system is simply given inputs and is expected to find interesting patterns in the inputs
with no other training signal. In many ways, reinforcement learning is the most difficult
problem of the three, because it must learn by trial and error from a reinforcement signal
that is not as informative as might be desired.

This training signal typically gives delayed reward: a bad decision may not be punished
until much later, after many other decisions have been made. Similarly, a good decision
may not yield a reward until much later. Delayed reward makes learning much more
difficult.

The next three sections define the three types of reinforcement learning problems
(Markov chains, MDPs and POMDPs), and the two approaches to solving them (pure
policy search, and dynamic programming).

 2.1.1 Markov Chains

A Markov chain is a set of states X, a starting state x0∈X, a function giving transition
probabilities, P(xt,xt+1), and a reinforcement function R(xt,xt+1). The state of the system
starts in x0. Time is discrete, and if the system is in state xt at time t, then at time t+1,
with probability P(x1,x2), it will be in state xt+1, and will receive reinforcement R(xt,xt+1).
There are no decisions to make in a Markov chain, so the learning system typically tries
to predict future reinforcements. The value of a state is defined to be the expected
discounted sum of all future reinforcements:

= ∑

∞

=
+

ti
ii

i
t xxRExV),()(1γ

16

where 0≤γ≤1 is a discount factor, and E[] is the expected value over all possible
trajectories. If a state transitions back to itself with probability 1, then the reinforcement
is usually defined to be zero for that transition, and the state is called an absorbing state.
If γ=1, then the problem is said to be undiscounted. If the reinforcements are bounded,
and either γ<1 or all trajectories lead eventually to absorbing states with probability 1,
then V is well defined.

Markov chains are rarely useful reinforcement learning problems by themselves, but are
useful for solving more general problems. Here is one case, though, where the value of a
state in a Markov chain has a useful meaning: suppose the time step in the chain
represents one year, and the reinforcement represents the number of dollars that a share in
a certain stock will pay each year in dividends. The chain always reaches an absorbing
state with probability 1, representing the company going bankrupt. An investor has some
money to invest for at least that long, and has the choice between either investing in that
stock (and never selling it), or putting the money into a savings account with an interest
rate of ((1/γ)-1), compounded annually. If the state right now is xt, how much should the
investor be willing to pay for one share of the stock? The answer is V(xt), as defined
above.

This example illustrates what discounting does. If γ is close to one, then reinforcement in
the distant future is almost as desirable as immediate reinforcement. If γ is close to zero,
then only reinforcement in the near term matters much. So γ can be thought of as directly
related to calculations for the present value of money in economics.

Another way to look at V is as a weighted sum of future reinforcements, where the first
reinforcement has weight 1, the second has weight γ, the third has weight γ2, and so on.
How many terms does it take before half of the total weight has occurred? In other
words, what is the "half-life" of this exponential weighting? The answer is Logγ2 steps.
This is easy to remember to one significant figure for certain common values of γ. When
γ=0.9, half of the reinforcement that matters happen in the first 7 time steps. When
γ=0.99, the half-life is 70 time steps. For γ=0.999 it's 700, and for γ=0.9999 it's 7000.
These rough numbers are useful to remember when picking a discount factor for a new
reinforcement-learning problem.

 2.1.2 MDPs

Markov chains are of limited interest because there are no decisions to make. Instead,
most reinforcement learning deals with Markov Decision Processes (MDPs). An MDP is
like a Markov chain, except that on every time step the learning system must look at the
current state and choose an action from a set of legal actions. The transition probability
and reinforcement received are then functions of both the state and the action. Given a
discount factor γ, the problem is to learn a good policy, which is a function that picks an
action in each state. When following a given policy, an MDP reduces to a Markov chain.
The goal is to find the policy such that the resulting chain has as large a value in the start
state as possible.

17

This is a very general problem. A control problem, such as flying a plane, can be viewed
as an MDP, where the current position, attitude, and velocity make up the state, and the
signals sent to the control surfaces constitute the action. Reinforcement might be a signal
such as a 1 on every time step until the plane crashes, then a 0 thereafter. That is
equivalent to telling the learning system to do whatever it takes to avoid crashes, but not
giving it any clues as to what it did wrong when it does crash.

Optimization problems can also be thought of as MDPs. For example, to optimize a
schedule that tells several shops what jobs to do and in what order, you can think of a
completely-filled-out schedule as being a state. An action is then the act of making a
change to the schedule. The reinforcement would be how good the schedule is,
optimizing speed or cost or both.

 2.1.3 POMDPs

In an MDP, the next state is always a stochastic function of the current state and action.
Given the current state and action, the next state is independent of any previous states and
actions. This is the Markov property, and systems without that property are called
Partially Observable Markov Decision Processes (POMDPs). An example would be a
the card game Blackjack, where the probability of the next card drawn from the deck
being an ace is not just a function of the cards currently visible on the table. It is also a
function of how many aces have already been drawn from the current deck. In other
words, if the "state" is defined to be those cards that are currently visible, then the
probability distribution of the next state is not just a function of the current state. It is
also a function of previous states.

There is a simple method for transforming any POMDP into an MDP. Just redefine the
"state" to be a list of all observations seen so far. In Blackjack, the current "state" would
be a record of everything that has happened since the last time the deck was shuffled.
With that definition of state, the probability distribution for the next card truly is a
function only of the current state, and not of previous states. Unfortunately, this means
that number of states will be vastly increased, and the dimensionality of the state space
will change on each step, so this may make solving the problem difficult.

Another approach to converting a POMDP to an MDP is the belief state approach. This
is applicable when the POMDP is a simple MDP with part of the state not visible. The
agent maintains a probability distribution of what the non-observable part of the state is,
and updates it according to Bayes rule. If you call this probability distribution itself the
"state", then the POMDP is reduced to an MDP. This can be a much better approach than
just recording a history of all observations, since the belief state is typically finite
dimensional. In addition, this approach doesn't waste time remembering useless
information. In the Blackjack example, a belief-state approach would simply remember
which cards have been seen already, but would not record what order they were seen in,
and would not record what actions were performed earlier.

18

Finally, there is an unfortunate term that has led to widespread confusion. A POMDP is
often said to have hidden state, in contrast to an MDP, which does not. This reflects that
most POMDPs can be thought of as MDPs where part of the state is not observable.
However, that does not mean that any MDP with unobservable state will become a
POMDP! For example, suppose a diver picks up a clam from the ocean floor. The diver
does not know whether the clam contains a pearl. That is one aspect of the state of the
universe that is not observable. It is also highly relevant to the diver's behavior: if there is
no pearl, then it may not be worth the effort to open the clam. Since the state is hidden,
and is important, does this become a POMDP? No. It is true that given the current
observations, the diver cannot tell whether the pearl is there. However, remembering
previous observations gives no more information than just the current observation.
Therefore, it is not a POMDP. The system is still an MDP, despite the state that is
hidden. The question to ask is always "would the agent be able to improve performance
by remembering previous observations?". If the answer is yes, then it is a POMDP,
otherwise it is an MDP.

 2.1.4 Pure Policy Search

Given an MDP or POMDP, how can an agent find a good policy? The most
straightforward approach is to make up a policy, evaluate it by following it for a while,
then make changes to it. This pure policy search is the approach followed by genetic
algorithms, backpropagation through time, and learning automata. This would be
expected to work well for problems where local minima in policy space are rare. It would
also be expected to work well when the number of policies is small compared to the size
of the state space. For example, if there are two flight control programs that were written
for the space shuttle, and there's only room for one, then there are really only two policies
possible: use one program or the other. Clearly, the best way to find the optimal policy
will be to simply try both of them in simulation, and see which one works better. There
are also problems where pure policy search does not work well. One example is the
following MDP:

Win

Lose

Start

…

Figure 2.1.An MDP where pure policy search does poorly

In each state, the learning system must choose either the solid-line action or the dotted-
line action. The only way to win is to choose the right action on every single time step. If

19

the learning system must always start in the start state, and if the only reinforcement
comes in the Win/Lose states, then it is very difficult to learn the policy directly. If there
are N states in each row, then only one out of every 2N policies will be optimal, and slight
improvements to a suboptimal policy will never yield improvements in performance. If
the learning system is allowed to choose which state to start in, then this can still be made
difficult by adding an exponential number of new states that transition to the Win and
Lose states, but aren't reachable from the Start state.

2.1.5 Dynamic Programming

For problems like figure 2.1, a better approach is to learn more than just a policy. For
example, the learning system might remember which states are bad, with the rules:

1 The Lose state is bad.

2 If both arrows from a state lead to bad states, then that state is bad

3 If one arrow leaving a state goes to a bad state, then don't choose that action

Using this learning system, the agent can quickly learn to solve the problem. If it
repeatedly starts in the Start state and performs random actions (except when rule 3
specifies an action), then it will naturally learn that the bottom states near the end are bad,
and work its way back toward the beginning. After just O(N) runs, it will have a perfect
policy.

Another approach would be to remember which arrows are bad rather than which states
are bad. That could be done using these rules instead:

1 If an arrow goes to the Lose state, then that arrow is bad

2 If an arrow goes to a state with two bad arrows, then that arrow is bad

This also learns quickly. These two algorithms are known as incremental value iteration
and Q-learning respectively. They are both forms of dynamic programming (Bertsekas,
1999). In general, dynamic programming algorithms learn a policy by storing more
information than just the policy. They store values, which indicate how good states or
state-action pairs are. Each value is updated according to the values of its successors.
That causes information to flow back from end states toward the start state. Once the
values have been learned, the policy becomes trivial: always choose the action that is
greedy with respect to the learned values.

The two approaches to solving reinforcement-learning problems, pure policy search, or
using values, tend to be used by different research communities, and are not generally
combined. In chapter 6, it will be shown that through gradient-descent techniques, it is
natural to combine the two approaches, and that in some cases the combination performs
much better than either alone.

20

 2.2 Reinforcement-Learning Algorithms
This section gives an overview of some of the reinforcement-learning algorithms in
common use.

2.2.1 Actor-Critic

In actor-critic systems, there are two components to the reinforcement-learning system.
The critic learns values, and the actor learns policies. At any given time, the critic is
learning the values for the Markov chain that comes from following the current policy of
the actor. The actor is constantly learning the policy that is greedy with the respect to the
critic's current values.

It is particularly interesting to examine actor-critic systems that use a lookup table to store
the values and policies. A lookup table represents the value in each state with a separate
parameter. If it first updates the value in every state once, then updates the policy in
every state once, then repeats, then this reduces to incremental value iteration, which is a
form of dynamic programming that is guaranteed to converge to the optimal policy. If it
instead updates all the values repeatedly in all the states until the values converge, then
updates all the policies once, then repeats, then it reduces to policy iteration, another form
of dynamic programming with guaranteed convergence. If it updates all the values N
times between updating the policies, then it reduces to modified policy iteration, which is
also guaranteed to converge to optimality.

It would seem that an actor-critic system with a lookup table is guaranteed to converge to
optimality no matter what. Surprisingly, that is not the case. Although it always
converges for γ<0.5 (Williams & Baird 1993), it does not always converge for larger γ, as
shown by the following counterexample:

21

1

6

5

4

2

3

1, 3/(1-γ)

1, 3/(1-γ)

2, 3/(1-γ)

1, 1/(1-γ)

2, 1/(1-γ)

2, 1/(1-γ)

11

11

11

3

3

33

33

Figure 2.2. An MDP where actor-critic can fail to converge

The number on each arrow in figure 2.2 is the reinforcement. In each state, there is a
choice between moving either 1 or 2 states around the circle. The first number at each
state is the current policy (to move 1 or 2 states), and the second number is the current
value (which is a function of the discount factor). Let Bi be the act of updating the value
in state i to match the value of its successor under the current policy. Let Ii be the act of
improving the policy in state i to be greedy with respect to the current values of the
immediate successors. Performing the following updates in the order listed (reading from
left to right) causes the policies and values to oscillate:

B1, I3, B4, I6, B2, I4, B5, I1, B3, I5, B6, I2

This updates every state's value and policy exactly once, yet leaves the policies in half the
states being wrong. It can be repeated forever without every converging. If fact, even if
the initial values are perturbed slightly, it will still oscillate forever.

On the other hand, randomly-selected B and I operations will converge with probability 1.
This is obvious, since when there are optimal policies and values everywhere, no further
changes are possible. There is a finite-length sequence of updates that will reach those
optimal policies and values, and any finite sequence will be generated eventually with
probability 1.

22

 2.2.2 Q-learning

A more common algorithm is Q-learning. In Q-learning, a value Q(x,u) is stored for each
state x and action u. A Q value is updated according to:

()),(max),()1(),(1 uxQRuxQuxQ tt
u

tttt +++−← γαα , (2.1)

where a is a small, positive learning rate. A Q value Q(x,u) is an estimate of the expected
total discounted reinforcement received when starting in state x, performing action u, and
following the optimal policy thereafter. The optimal policy is the policy that is greedy
with respect to the optimal Q function. The optimal Q function is the unique function
that satisfies this relationship between each Q value and the Q values of its successor
state:

[]()),(max),(1 uxQREuxQ tt
u

tt ++= γ (2.2)

Equation (2.2) is the Bellman equation for Q-learning. The update in equation (2.1) can
be thought of as changing the left side of the Bellman equation to more nearly match a
sample of the right side. It must move slowly because the right side of (2.2) is an
expected value, averaged over all possible successor states, while the right side of (2.1) is
just a random sample of a successor state. Q-learning has guaranteed convergence with
lookup tables if the learning rate decreases over time at an appropriate rate, and the Q
values are stored in a lookup table (Watkins, 1989).

For a particular Q function, the difference between the two sides of equation (2.2) is the
Bellman residual. Suppose that for a particular Q function, the worst Bellman residual
for any state-action pair is an absolute difference of δ. Since this Q function is wrong, the
policy that is greedy with respect to it may also be wrong. How bad can the greedy policy
be? If the very first time step is in a state with a Bellman residual of δ, then the greedy
policy might be suboptimal, transitioning to states whose expected max Q values are
lower than for the optimal action by an amount of δ. In the long run, this may lower the
total, expected, discounted reinforcement by at most δ. On the second time step, there
might be anther error of at most δ, which lowers the total by at most γδ. In the long run,
the total return may be too low by δ(1+γ+γ2+γ3+…)=δ/(1-γ). This kind of error bound is
typical for reinforcement-learning algorithms based on dynamic programming. They are
typically proportional to the maximum Bellman residual, and inversely proportional to (1-
γ). That is unfortunate when γ is close to 1, because that leads to a very large bound.
Unfortunately, these bounds are tight: there are cases where the error really is that bad.

 2.2.3 SARSA

In the algorithms discussed so far, it is assumed that states and actions are somehow
chosen for training. It might be that they are chosen randomly, or it might be that they are
chosen by following some trajectory generated by a random policy. One reasonable idea

23

would be to start in the start state, and on every time step, choose the action that is greedy
with probability 1-ε, and a random action with probability ε, for some small, positive ε. It
might even be argued that the randomness should never be turned off, just in case the
environment changes. If that is the case, then perhaps it would be better to learn the
policy that is optimal, given that you will explore ε of the time. It would be like a person
who when walking always takes a random step every 100 paces or so. Such a person
would avoid walking along the top of a cliff, even when that is the "optimal" policy for a
person who doesn't explore randomly.

SARSA is an algorithm that uses this idea. The update is:

()),(),()1(),(11 ++++−← ttttttt uxQRuxQuxQ γαα

This is the same as Q-learning, except that the value of the next state is not the maximum
Q value. Instead, it is the Q value associated with whatever action is chosen at time t+1.
That action will be the greedy action with probability 1-ε. In that case, the update is
identical to Q-learning. With probability ε, the action will be random, and the value that
is backed up will be lower.

24

 3 Gradient Descent

This chapter describes the various forms of incremental and stochastic gradient descent,
and the convergence results that have been proved. This will be the theoretical
foundation for the algorithms proposed in chapters 4, 5, and 6.

 3.1 Gradient Descent
Given a smooth, nonnegative, scalar function f(x), how can the vector x that minimizes f
be found? One approach is gradient descent. The vector x is initialized to some random
value, and then on each time step, it is updated according to:

)(xxx x f∇−← α

Clearly, f(x) will tend to decrease over time. It may eventually get near a local minimum,
and then start to oscillate as it bounces back and forth across the bottom. To get f(x) to
converge, it is usually necessary to shrink the learning rate over time, so the oscillations
will decrease. If the learning rate shrinks too fast, though, x may converge to a point that
isn't a local minimum. The standard conditions on the learning rate are that it shrinks
according to some schedule such that the following two conditions hold:

∞=∑
∞

=0t
tα (3.1)

∞<∑
∞

=0

2

t
tα (3.2)

Simple gradient-descent methods are almost never used with reinforcement learning,
supervised learning, or any of the problems or algorithms mentioned in this thesis.
Instead, it is much more common to use incremental gradient descent, stochastic gradient
descent, or both.

 3.2 Incremental Gradient Descent
The previous section assumed that f(x) was an arbitrary, smooth function. Suppose,
instead, that f(x) is defined to be the sum of a large number of individual functions:

∑
=

=
n

i
iff

1

)()(xx

25

Given this definition of f(x), simple gradient descent would be to repeatedly change x
according to:

∑
=

∇−←
n

i
if

1

)(xxx xα

Incremental gradient descent repeats this instead:

)(

 to1for

xxx x if

ni

∇−←

=
α

This is often used, for example, with backpropagation neural networks. In that case x is a
weight vector for the neural network, and fi(x) is the squared error in the output for
training example i. Then f(x) is the total squared error. Simple gradient descent
corresponds to epoch-wise training, and incremental gradient descent corresponds to
incremental training, where the weights are changed immediately after each training
example is presented.

 3.3 Stochastic Gradient Descent
Incremental training assumes that each of the fi(x) functions are evaluated in turn before
starting over on the first one. Alternatively, one could just pick the fi(x) functions
randomly from the set by repeatedly doing:

)(

],1[innumber random

xxx x if

ni

∇−←

←
α

This is stochastic gradient descent. On each time step, the x vector changes by a random
amount, but on average it is moving in the direction of the gradient. As the learning rate
shrinks, these small steps start to average out, and it is very much like doing simple
gradient descent.

 3.4 Unbiased Estimators
Of course, there are other forms of stochastic gradient descent as well. The most general
form is to repeatedly do:

()wxxx x +∇−←)(fα (3.3)

where w is a random, zero-mean vector chosen independently each time from some fixed
probability distribution. The stochastic gradient descent in the previous section is just a

26

special case of update (3.3). The expression in parentheses in (3.3) is correct on average,
so its value on any given time step is an unbiased estimate of the true gradient. Let Y and
Z be random variables, and let y1, y2, z1, and z2 be samples from those random variables.
If E[] is the expected value, then it is the case that:

y1 is an unbiased estimate of E[Y]

∇y1 is an unbiased estimate of E[∇Y]

y1+z1 is an unbiased estimate of E[Y+Z]

y1 z1 is an unbiased estimate of E[Y Z]

y1 y2 is an unbiased estimate of E[Y2]

2 y1 ∇y2 is an unbiased estimate of ∇E[Y2] = E[∇(Y2)]

2 y1 ∇y1 is an unbiased estimate of (∇E[Y])2 = (E[∇Y])2

The last two lines are particularly important. True stochastic gradient descent requires
unbiased estimates of the gradient. To get the expected gradient of the square of a
random variable requires two independent samples (y1 and y2). If the same sample is used
twice, this does yield an unbiased estimate of something, but it's not the expected value of
a square any more. This is significant for most of the algorithms proposed in this thesis.
Convergence to a local minimum of the mean squared Bellman residual is guaranteed
using two independent samples. If a single sample is used twice, then it minimizes the
squared expected value rather than the expected squared value. Depending on how
random the MDP is, this might cause the policy to be fairly suboptimal.

 3.5 Known Results for Error Backpropagation
A large literature exists for backpropagation convergence results, based on the general
literature for stochastic approximation. The convergence of stochastic and incremental
algorithms for neural networks has been extensively studied (White 1989, White 1990,
Gaivoronski 1994, Mangasarian & Solodov 1994, Luo & Tseng 1994, Solodov 1995,
Mangasarian & Solodov 1995, Solodov 1996, Luo 1991, Bertsekas 1995, Bertsekas &
Tsitsiklis 1996, Solodov 1997, Solodov and Zavriev 1998). Over the last few years,
results have been extended and generalized. Two of the latest papers are most relevant to
the algorithms in this thesis.

If the f(x) function is smooth and has a Lipshitz continuous gradient, then a huge range of
results can be proved (Bertsekas & Tsitsiklis, 1997, revised Jan 1999). If f is nonnegative
and the learning rate decays according to equations (3.1) and (3.2), then f(x) will
converge, its gradient will converge to zero, and every limit point of x is a stationary
point of f, all with probability 1. In other words, it is guaranteed to converge to a local
minimum in every desirable sense. In fact, for the incremental version (rather than

27

stochastic), the convergence is absolutely guaranteed, rather than just with probability 1.
Most function approximators satisfy the smoothness assumptions, so any simple error
function like mean squared error will also satisfy them.

Even the smoothness assumptions can be relaxed, allowing piecewise smooth functions
that contain creases where the gradient doesn't even exist (Solodov 1995). These results
apply to incremental gradient descent. It is interesting to ask what the definition of "local
minimum" will be when there are creases. Obviously, it can't be that the gradient will
converge to zero, since that can't happen when doing gradient descent on a function like
f(x)=|x|. The corresponding concept for nonsmooth functions is that x converges to a
point whose generalized derivative includes the zero vector. In other words, x converges
to a local minimum, even if the gradient isn't defined at that point. The full result is that f
will converge certainly, and x will converge to a local minimum if x remains bounded
(which in turn is assured if a weight decay term is added).

Each of the algorithms in this thesis is said to converge "in the same sense as
backpropagation". This means that if they are executed with incremental gradient descent
(such as during prioritized sweeping), then convergence is guaranteed by the Solodov
results in every sense that would be wanted. If the algorithms are executed with smooth
error functions, then the Bertsekis and Tsitsiklis results guarantee convergence in every
sense that would be wanted. In fact, these results are even stronger than are needed.

That still leaves one other case. What if it is desired to do stochastic gradient descent
rather than incremental (e.g. during reinforcement learning with random exploration), and
the error function is not smooth? Reinforcement learning differs from Backpropagation
in that this case of nonsmooth error functions can actually occur, even when the function
approximator appears at first glance to be very smooth. The problem arises because of
the max operator. If a neural network is infinitely differentiable and has two outputs,
Q1(x) and Q2(x), corresponding to two different actions, then the value function is defined
as:

)),(),,(max(),(21 wxwxwx QQV =

In this case, even if Q1 and Q2 are smooth functions of the weights, V probably isn't. This
can be seen by considering the case when Q1(x,w)=Q2(x,w). Suppose that a
infinitessimal increase in a given weight causes Q1 to increase but not Q2. Then a small
increase in that weight will cause V to increase, but a small decrease in that weight will
not change V at all. That means that the derivative of V with respect to that weight will
not exist at that point. Most of the algorithms proposed here have error functions that are
functions of a max, so this would make the error functions nonsmooth. Even worse, there
is no way to fix the problem by using some kind of soft max function. In dynamic
programming, the maximum is a very important function. Any smoothing of it would
introduce errors, and even a small error introduced on every time step can lead to a large
error in the final policy.

28

So is it hopeless? Not at all. It turns out the function approximator wasn't as smooth as it
initially looked, but it can easily be made smooth without changing it much at all. The
solution is to call the outputs of the function approximator y1 and y2 instead of Q1 and Q2.
Then, a simple function calculates Q1 and Q2 as a function of y1 and y2. This is done in
such a way that Qi is almost identical to yi, Qi is a smooth function of the weights, and the
maximum of all the Qi is itself a smooth function of the weights. The process doesn't
even change the policy; the maximum Qi will be the same i as the maximum yi.

One possible example of such a smoothing function is given here. It will ensure that all
of the derivatives are continuous. It could be much simpler if it just ensure that the first
and second derivatives were continuous.

First, define each Q value to be a weighted average of the y values, as shown in equation
(3.4).

()
()∑

∑
−

−
=

j
ij

j
jij

i yyg

yyyg

Q
),(),(

),(),(),(

),(
wxwx

wxwxwx

wx (3.4)

where g is a smooth, positive function that approaches zero for large positive and
negative arguments. In other words, each Q will be a weighted average of all the y
values, but it will give the most weight to its own y value and y values close to its own,
and very little weight to y values that are much different from its own. One possible
choice for the g function is equation (3.5), which is graphed in figure 3.1.

()

>

=

−
−

otherwise

0 if
)(

1
3
7

3.01

ε

ε

ε

x

xex

e

xe
xg (3.5)

29

-4 -2 2 4 6

0.5

1

1.5

2

Figure 3.1. The g function used for smoothing. Shown with ε=1.

This filter on the output of the function approximator causes the V function to be smooth,
yet has a very small effect on the nature of the Q function. Its properties include:

• The policy is unchanged. The maximum Q corresponds to the maximum y. Q values
will be tied for maximum if and only if the corresponding y values are tied.

• The values change little. If all the y values are spread out, with no two being close,
then each Q will be almost equal to the corresponding y. If two or more y values are
close to each other, then the corresponding Q values will be drawn closer to the mean
of those y values. In either case, the Q value is close to the corresponding y value. In
each case, the meaning of "close" is controlled by ε. For any given set of y values, as
ε goes to zero, each Q value goes to the corresponding y value.

• It is computationally cheap. Very little calculation is needed to find Q from y,
especially compared to the computation needed to find y when y is a neural network.
Furthermore, some algorithms, such as VAPS (chapter 6) with φ>0, or Wire Fitting
(Baird & Klopf, 1993), already pass the output of y through a similar-looking
function, so there is very little additional cost to fold in this new calculation.

• It makes max smooth. The partial derivative of V with respect to each y exists
everywhere. The partial derivative of each Q with respect to each y or weight also
exists. The second and higher derivatives can also be made to exist if desired.

Each of these properties is easily shown. Since g is a function of x/ε, reducing ε will
cause the peak to become narrower, causing each y to have less effect on other y values
that are far from it. Clearly, as ε goes to zero, every Q will therefore approach the
corresponding y.

To show that smoothing does not affect the policy (the largest y corresponds to the largest
Q), first consider what would happen if g were exponential for all x, rather than just for
x≤0. In that case, plugging the exponential in for g in equation (3.4) causes the yi terms in

30

the numerator and denominator of equation (3.4) to cancel, leaving an expression that
does not depend on yi. So, if g were a simple exponential, all of the Q values would be
equal to each other. Next, consider what happens when the g defined in equation (3.5) is
used instead. Note that when x is positive, g(x)<ex/ε. This must be true because g(x) is
defined in that case to be of the form g(x)=ex/ε(1-f(x)), where f(x) is a positive expression,
which makes g less than the simple exponential. Note that for the maximum yi, all of the
differences are negative, so the Qi value will be the same for the simple exponential as for
the g from equation (3.4). For any y value that is not the maximum, the weight that it
gives to y values greater than itself is decreased when g is changed from a simple
exponential to equation (3.4). Since it gives reduced weight to y values greater than
itself, and the same weight to itself and values less than itself, its Q value will decrease.
So, for the simple exponential, all Q values are the same, and then changing g to use
equation (3.4) causes the Q values associated with the maximum y to stay the same, and
all others to decrease. Therefore, the smoothing preserves policies. All of this only
works because g(x)<ex/ε, and that is why g was specifically chosen to have that property.

It is also easy to show that g is continuous, as is its first derivative with respect to the y
values (the gradient), its second derivative (the Hessian), and all higher derivatives.
Clearly this will be true at points other than g(0). At g(0-), the simple exponential has a
value of ex/ε, and an nth derivative of ε-nex/ε. For x>0, g is of the form g(x)=ex/ε(1-f(x)), and it
is clear that f(x) is an expression whose value and all derivatives at 0 go to zero when
approached from the right. Given that fact, it is clear that g(0+) itself must have the
appropriate derivatives when approached from the right. The derivative of the right half
of g(x) will be the sum of two terms: ε-1g(x)-f '(x)g(x). The second term contains an f,
which makes it zero at x=0+, and makes all further derivatives of it zero there. So the
second term can be ignored when taking further derivatives. The first term is the same as
when taking the derivative of the simple exponential. Further derivatives follow the same
pattern. Therefore, g(0-)=g(0+) and also g '(0-)=g '(0+) and g ''(0-)=g ''(0+) and so on.

Finally, this smoothing function makes the maximum operator smooth. This is obviously
true when there is a unique maximum y. To consider the case of a tie, plug the definition
of g into the definition of Q, and take the derivatives for the maximum Q value with
respect to all the y values. Note that for the maximum Q, every g behaves just like a
simple exponential. Taking the derivative of the combined equation, and looking at the
limit as the second-largest y approaches the largest y, it is clear that the gradients of each
of them with respect to all the y values (including each other) are equal. This only works
because g is a simple exponential for x<0. That is why g was specifically chosen to have
that property.

When the function approximator is smoothed in this way, the algorithms discussed in this
thesis converge to a local minimum in the same sense as backpropagation. It is
interesting that convergence proofs for supervised learning require smooth function
approximators, and now convergence proofs for reinforcement learning also require
smooth function approximators. However, in the reinforcement learning case, the
smoothness constraint deals with the derivative of the maximum output, not just the

31

derivatives of each output individually. As in supervised learning, it is not difficult to
ensure function approximators have the needed property. In fact, as shown in this
section, any function approximator that is smooth in the supervised-learning sense can be
made smooth in the reinforcement-learning sense with a small modification. This
modification has little effect on the Q values, little effect on the computational cost, and
no effect on the policy. Neither this nor decaying learning rates were needed for any of
the simulations in this thesis.

32

 4 Residual Algorithms: Guaranteed Convergence with Function
Approximators

Reinforcement learning is often done using function approximators. Although there is a
well-developed theory guaranteeing reinforcement-learning convergence on lookup
tables, and although there is a well-developed theory guaranteeing supervised-learning
convergence on function approximators, little has been proved about the combination of
the two. This chapter demonstrates that when the two concepts are combined in the
obvious way, as has normally been done, the algorithms can diverge. This chapter shows
very simple problems where these algorithms blow up, proposes residual gradient
algorithms, which have provable convergence, and proposes residual algorithms, which
maintain the guarantees while learning faster in practice.

 4.1 Introduction
A number of reinforcement learning algorithms have been proposed that are guaranteed
to learn a policy, a mapping from states to actions, such that performing those actions in
those states maximizes the expected, total, discounted reinforcement received:

V Rt
t

t

= ∑γ (4.1)

where Rt is the reinforcement received at time t, <> is the expected value over all

stochastic state transitions, and γ is the discount factor, a constant between zero and one
that gives more weight to near-term reinforcement, and that guarantees the sum will be
finite for bounded reinforcement. In general, these reinforcement learning systems have
been analyzed for the case of an MDP with a finite number of states and actions, and for a
learning system containing a lookup table, with separate entries for each state or state-
action pair. Lookup tables typically do not scale well for high-dimensional MDPs with a
continuum of states and actions (the curse of dimensionality), so a general function-
approximation system must typically be used, such as a sigmoidal, multi-layer perceptron,
a radial-basis-function network, or a memory-based-learning system. In the following
sections, various methods are analyzed that combine reinforcement learning algorithms
with function approximation systems. Algorithms such as Q-learning or value iteration
are guaranteed to converge to the optimal answer when used with a lookup table. The
obvious method for combining them with function-approximation systems, called the
direct algorithm here, does not have those guarantees. If fact, counterexamples will be
shown that demonstrate both direct Q-learning and direct value iteration failing to
converge to an answer. Even batch training and on-policy training doesn't help direct Q-
learning in that example. A new class of algorithms, residual gradient algorithms, are

33

shown to always converge, but residual gradient Q-learning and residual gradient value
iteration may converge very slowly in some cases. Finally, a new class of algorithms,
residual algorithms, are proposed. It will be shown that direct and residual gradient
algorithms are actually special cases of residual algorithms, and that residual algorithms
can easily be found such that residual Q-learning or residual value iteration have both
guaranteed convergence, and converge quickly on problems for which residual gradient
algorithms converge slowly. This chapter does not just define a new algorithm. Rather,
it defines a new process for deriving algorithms from first principles. Using this process,
the residual form of any reinforcement learning algorithm based on dynamic
programming can be easily derived. This new algorithm is then guaranteed to converge,
and may even learn faster in practice, which is shown in simulation here. In addition, this
framework will form the basis of the algorithms proposed in chapters 5 and 6, which are
also types of residual algorithms.

 4.2 Direct Algorithms
If a Markov chain has a finite number of states, and each V(x) is represented by a unique
entry in a lookup table, and each possible transition is experienced an infinite number of
times during learning, then update Error! Reference source not found. is guaranteed to
converge to the optimal value function as the learning rate α decays to zero at an
appropriate rate. The various states can be visited in any order during learning, and some
can be visited more often than others, yet the algorithm will still converge if the learning
rates decay appropriately (Watkins, Dayan 92). If V(x) was represented by a function-
approximation system other than a lookup table, update Error! Reference source not
found. could be implemented directly by combining it with the backpropagation
algorithm (Rumelhart, Hinton, Williams 86). For an input x, the actual output of the
function-approximation system would be V(x), the “desired output” used for training
would be R+γV(x'), and all of the weights would be adjusted through gradient descent to
make the actual output closer to the desired output. For any particular weight w in the
function-approximation system, the weight change would be:

w

xV
xVxVRw t

tt ∂
∂

γα
)(

)()()(1 −+=∆ + (4.2)

Equation (4.2) is exactly the TD(0) algorithm, by definition. It could also be called the
direct implementation of incremental value iteration or Q-learning. The direct algorithm
reduces to the original algorithm when used with a lookup table. Tesauro (1990, 1992)
has shown very good results by combining TD(0) with backpropagation (and also using
the more general TD(λ)). Since it is guaranteed to converge for the lookup table, this
approach might be expected to also converge for general function-approximation systems.
Unfortunately, this is not the case, as is illustrated by the tiny MDP shown in figure 4.1.

34

V(2)=w V(1)=2w

0 100 200 300 400

10

1000

100000.

W vs. Time

Figure 4.1. The 2-state problem for value iteration, and a plot of
the weight vs. time. R=0 everywhere and γ=0.9. The weight starts
at 0.1, and grows exponentially, even with batch training, and even
with arbitrarily-small learning rates.

In figure 4.1, the entire MDP is just two states, and the function approximator is linear,
with only a single weight. There is zero reinforcement on each time step, and the
discount factor γ=0.9. The optimal weight is zero, giving correct values of zero in each
state. Unfortunately, if the initial weight is nonzero, then it will grow without bound, and
the values will grow without bound. This problem happens whether training is batch or
incremental, and no matter what positive learning rate is chosen, even a slowly-
decreasing learning rate. It is disturbing that a widely-used algorithm would fail on such
a simple problem.

This MDP has no absorbing state. Trajectories go forever. Could it be that MDPs with
finite-length trajectories will always avoid the problem seen here? No. Any MDP with a
discount factor of γ can be transformed into a new MDP with no discounting (a discount
factor of 1.0), with a new absorbing state added, and with a transition from every other
state to the absorbing state with probability 1-γ. If that transformation is done to any of
the counterexamples given in this thesis, the weights will still change in exactly the same
way, and the values will change in exactly the same way. So whether trajectories
eventually end with probability 1 or just go on forever, either way the counterexamples
blow up the same way.

Could the problem be that the function approximator is not general enough? After all, it
is able to represent the optimal value function, v(0)=v(1)=0, but there exist other value
functions that it cannot represent, such as v(0)=v(1)=1. No, even that does not prevent
divergence in general, as shown by figure 4.2.

35

V(1)=w +2w
0 1

V(2)=w +2w
0 2

V(3)=w +2w
0 3

V(4)=w +2w
0 4

V(5)=w +2w
0 5

V(7)=2w +w
 0 7

V(6)=w +2w
0 6

-40000 -20000 20000 40000 60000

-20000

20000

40000

60000

V(7) vs. V(1)

-1 �1016 -5 �1015 5�1015

-1 �1015

-5 �1014

5�1014

1�1015

1.5 �1015

2�1015

w vs. w
0 7

-4 �1015 -2 �1015 2�1015

-1 �1015

-5 �1014

5�1014

1�1015

1.5 �1015

2�1015

w vs. w
1 7

Figure 4.2. The 7-state star problem for value iteration, and a plot
of the values and weights spiraling out to infinity, where all
weights started at 0.1. By symmetry, weights 1 through 6 are
always identical. R=0 everywhere and γ=0.9.

In figure 4.2, there are seven states, and the value of each state is given by the linear
combination of two weights. Every transition yields a reinforcement of zero. During
training, each possible transition is observed equally often. The function-approximation
system is simply a lookup table, with one additional weight giving generalization. This is
an extremely benign form of function-approximation system. It is linear, it is general
(can represent any value function over those states), the state vectors are linearly
independent, and all have the same magnitude (1-norm, 2-norm, or infinity-norm).
Furthermore, it has the desirable property that using backpropagation to change the value
in one state will cause neighboring states to change by at most two-thirds as much.
Therefore, this system exhibits only mild generalization. If one wished to extend the
Watkins and Dayan proofs to function-approximation systems, this would appear to be an
ideal system for which convergence to optimality could be guaranteed for the direct
method. However, that is not the case.

If the weight w0 were not being used, then it would be a lookup table, and the weights

and values would all converge to zero, which is the correct answer. However, in this
example, if all weights are initially positive, then all of the values will grow without
bound. This is due to the fact that when the first six values are lower than the value of
their successor, γV(7), and V(7) is higher than the value of its successor, γV(7), then w0 is

36

increased five times for every time that it is decreased, so it will rise rapidly. Of course,
w7 will fall, but more slowly, because it is updated less frequently. The net effect then is

that all of the values and all of the weights grow without bound, spiraling out to infinity.
It is also possible to modify the counterexample so the weights grow monotonically,
rather than spiraling out. Figure 4.3 shows one such Markov chain. Note that the value
of state 11 is always greater than that of state 1. This means that if the Markov chain
were converted to an MDP, adding a choice of which state to go to, it might be expected
to learn a policy that chooses to go to state 1.

V(1)=w +2w
0 1

V(2)=w +2w
0 2

V(3)=w +2w
0 3

V(4)=w +2w
0 4

V(5)=w +2w
0 5

V(11)=2w +w
 0 11

V(6)=w +2w
0 6

V(7)=w +2w
0 7

V(8)=w +2w
0 8

V(9)=w +2w
0 9 V(10)=w +2w0 10 5 10 15 20 25 301

10

100

1000
V(11)

V(1)

State Values vs. Time

Figure 4.3. The 11-state star problem for value iteration, where all
weights started at 0.1 except w0, which started at 1.0. R=0
everywhere and γ=0.9.

In this example, every transition was updated equally often, even though the transition
from state 1 to itself would be seen more often during an actual trajectory. What if
training were limited to on-policy learning? This is learning where the states are updated
with frequencies proportional to how often they are seen during trajectories, while
following a single, fixed policy. On-policy learning includes learning on states as they
are seen on a trajectory, or learning on randomly-chosen states from a database of states
gleaned from trajectories. On-policy training does guarantee convergence for linear
function approximators when the problem is purely prediction on a Markov chain (there
are no actions or decisions). Could this proof be extended to Q-learning on MDPs? No,
even with on-policy training and general, linear function approximators, Q-learning can
still blow up, as demonstrated in figure 4.4.

37

w +2w
0 1

w +2w
0 2

w +2w
0 3 w +2w

0 4
w +2w

0 5

2w +w
 0 11

w +2w
0 6

w +2w
0 7

w +2w
0 8

w +2w
0 9

w +2w0 10

1 2 3 4 5

11

6 7 8 9 10

w
12

w
13

w
14

w
15 w

16

w
17

w
18

w
19

w
20

w
21

Figure 4.4.The star problem for Q-learning. R=0 everywhere and
γ=0.9.

In this MDP, every transition receives zero reinforcement, and each state has two actions,
one represented by a solid line, and one represented by a dotted line. In all states, the
solid action transitions to state 11, and the dotted action transitions to one of the states 1
through 10, chosen randomly with uniform probability. During training, a fixed
stochastic policy is used to ensure sufficient exploration. In every state, the solid action is
chosen with probability 1/10, and the dotted action is chosen with probability 9/10. This
ensures that every state-action pair is explored infinitely often, and that each of the solid
Q values is updated equally often. If the solid Q values start larger than the dotted Q
values, and the transition from state 11 to itself starts out as the largest of the solid Q
values, then all weights, Q values, and values will diverge to infinity. As long as the
policy in every state is to do the solid action, the solid Q values will act just like the state
values in the example in figure 4.3. That ensures that the state values will all blow up
monotonically, which in turn ensures that the policy will never change.

This is true for both epoch-wise and incremental learning, and even for small learning
rates or slowly decreasing learning rates. This example demonstrates that for a simple
MDP with a linear function approximator able to represent all possible Q-functions, the Q
values can diverge, even when training on trajectories. The next section presents a way to
modify Q-learning to ensure convergence to a local optimum.

 4.3 Residual Gradient Algorithms
It is unfortunate that a reinforcement learning algorithm can be guaranteed to converge
for lookup tables, yet be unstable for function-approximation systems that have even a
small amount of generalization. Algorithms have been proved to converge for LQR
problems with quadratic function-approximation systems (Bradtke 93), but it would be

38

useful to find an algorithm that converges for any function-approximation system on
more general problems. To find an algorithm that is more stable than the direct
algorithm, it is useful to specify the exact goal for the learning system. For the problem
of prediction on a deterministic Markov chain, the goal can be stated as finding a value
function such that, for any state x and its successor state x', with a transition yielding
immediate reinforcement R, the value function will satisfy the Bellman equation:

V x R V x() (')= + γ (4.3)

where < > is the expected value over all possible successor states x'. For a system with a
finite number of states, the optimal value function V* is the unique function that satisfies
the Bellman equation. For a given value function V, and a given state x, the Bellman
residual is defined to be the difference between the two sides of the Bellman equation.
The mean squared Bellman residual for an MDP with n states is therefore defined to be:

21)()'(∑ −+=
x

n xVxVRE γ (4.4)

If the Bellman residual is nonzero, then the resulting policy will be suboptimal, but for a
given level of Bellman residual, the degree to which the policy yields suboptimal
reinforcement can be bounded (section 2.2.2, and Williams, Baird 93). This suggests it
might be reasonable to change the weights in the function-approximation system by
performing stochastic gradient descent on the mean squared Bellman residual, E. This
could be called the residual gradient algorithm. Residual gradient algorithms can be
derived for both Markov chains and MDPs, with either stochastic or deterministic
systems. For simplicity, it will first be derived here for a deterministic Markov chain,
then extended in the next section. Assume that V is parameterized by a set of weights.
To learn for a deterministic system, after a transition from a state x to a state x', with
reinforcement R, a weight w would change according to:

[][])()'()()'(xVxVxVxVRw
ww ∂

∂
∂
∂ γγα −−+−=∆ (4.5)

For a system with a finite number of states, E is zero if and only if the value function is
optimal.

In addition, because these algorithms are based on gradient descent, it is trivial to
combine them with any other gradient-descent-based algorithm, and still have guaranteed
convergence. For example, they can be combined with weight decay by adding a mean-
squared-weight term to the error function. My Ph.D. student, Scott Weaver, developed a
gradient-descent algorithm for making neural networks become more local automatically
(Weaver, 1999). This could be combined with residual gradient algorithms by simply
adding his error function to the mean squared Bellman residual. The result would still
have guaranteed convergence.

39

Although residual gradient algorithms have guaranteed convergence, that does not
necessarily mean that they will always learn as quickly as direct algorithms, nor that they
will find as good a final solution. Applying the direct algorithm to the example in figure
4.5 causes state 5 to quickly converge to zero. State 4 then quickly converges to zero,
then state 3, and so on. Information flows purely from later states to earlier states, so the
initial value of w4, and its behavior over time, has no effect on the speed at which V(5)

converges to zero. Applying the residual gradient algorithm to figure 4.2 results in much
slower learning. For example, if initially w5=0 and w4=10, then when learning from the

transition from state 4 to state 5, the direct algorithm would simply decrease w4, but the

residual gradient algorithm would both decrease w4 and increase w5. Thus the residual

gradient algorithm causes information to flow both ways, with information flowing in the
wrong direction moving slower than information flowing in the right direction by a factor
of γ. If γ is close to 1.0, then it would be expected that residual gradient algorithms would
learn very slowly on the problem in figure 4.5.

V(4)=w
4

V(5)=w
5

V(3)=w
3

V(2)=w
2

V(1)=w
1

V(0)=w
0

Figure 4.5. The hall problem. R=1 in the absorbing state, and zero
everywhere else. γ=0.9.

 4.4 Residual Algorithms
Direct algorithms can be fast but unstable, and residual gradient algorithms can be stable
but slow. Direct algorithms attempt to make each state match its successors, but ignore
the effects of generalization during learning. Residual gradient algorithms take into
account the effects of generalization, but attempt to make each state match both its
successors and its predecessors. These effects can be seen more easily by considering
epoch-wise training, where a weight change is calculated for every possible state-action
pair, according to some distribution, then the weight changes are summed and the weights
are changed appropriately. In this case, the total weight change after one epoch for the
direct method and the residual gradient method, respectively, are:

∆W Wd
x

R V x V x V x= − + − −∇∑α γ (') () () (4.6)

[]

[]

∆W

W W

rg
x

R V x V x

V x V x

= − + −

∇ − ∇

∑α γ

γ

(') ()

(') ()
(4.7)

In these equations, W, ∆W, and the gradients of V(x) and V(x') are all vectors, and the
summation is over all states that are updated. If some states are updated more than once
per epoch, then the summation should include those states more than once. The
advantages of each algorithm can then be seen graphically.

40

Figure 4.6 shows a situation in which the direct method will cause the residual to
decrease (left) and one in which it causes the residual to increase (right). The latter is a
case in which the direct method may not converge. The residual gradient vector shows
the direction of steepest descent on the mean squared Bellman residual. The dotted line
represents the hyperplane that is perpendicular to the gradient. Any weight change vector
that lies to the left of the dotted line will result in a decrease in the mean squared Bellman
residual, E. Any vector lying along the dotted line results in no change, and any vector to
the right of the dotted line results in an increase in E. If an algorithm always decreases E,
then clearly E must converge. If an algorithm sometimes increases E, then it becomes
more difficult to predict whether it will converge. A reasonable approach, therefore,
might be to change the weights according to a weight-change vector that is as close as
possible to ∆Wd, so as to learn quickly, while still remaining to the left of the dotted line,

so as to remain stable. Figure 4.7 shows such a vector.

∆Wd∆Wrg ∆Wrg
∆Wd

Figure 4.6. Epoch-wise weight-change vectors for direct and
residual gradient algorithms

∆Wrg

∆Wd

∆W
r

Figure 4.7. Weight-change vectors for direct, residual gradient,
and residual algorithms.

This weighted average of a direct algorithm with a residual gradient algorithm could have
guaranteed convergence, because ∆Wr causes E to decrease, and might be expected to be

fast, because ∆Wr lies as close as possible to ∆Wd: Actually, the closest stable vector to

∆Wd could be found by projecting ∆Wd onto the plane perpendicular to ∆Wrg, which is

represented by the dotted line. However, the resulting vector would be collinear with
∆Wr, so ∆Wr should learn just as quickly for appropriate choices of learning rate. ∆Wr
is simpler to calculate, and so appears to be the most useful algorithm to use. For a real
number φ between 0 and 1, ∆Wr is defined to be:

∆ ∆ ∆W W Wr d rg= − +()1 φ φ (4.8)

41

This algorithm is guaranteed to converge for an appropriate choice of φ. The algorithm
causes the mean squared residual to decrease monotonically (for appropriate φ), but it
does not follow the negative gradient, which would be the path of steepest descent.
Therefore, it would be reasonable to refer to the algorithm as a residual algorithm, rather
than as a residual gradient algorithm. A residual algorithm is defined to be any algorithm
in the form of equation (4.8), where the weight change is the weighted average of a
residual gradient weight change and a direct weight change. By this definition, both
direct algorithms and residual gradient algorithms are special cases of residual
algorithms.

An important question is how to choose φ appropriately. One approach is to treat it as a
constant that is chosen manually by trial and error, as is done when people use
backpropagation with a constant learning rate. Just as a learning rate constant can be
chosen to be as high as possible without causing the weights to blow up, so φ can be
chosen as close to 0 as possible without the weights blowing up. A φ of 1 is guaranteed
to converge, and a φ of 0 might be expected to learn quickly if it can learn at all.
However, this may not be the best approach. It requires an additional parameter to be
chosen by trial and error, and it ignores the fact that the best φ to use initially might not be
the best φ to use later, after the system has learned for some time.

Fortunately, it is easy to calculate the φ that ensures a decreasing mean squared residual,
while bringing the weight change vector as close to the direct algorithm as possible. To
accomplish this, simply use the lowest φ possible (between zero and one) such that:

∆ ∆W Wr rg⋅ > 0 (4.9)

As long as the dot product is positive, the angle between the vectors will be acute, and the
weight change will result in a decrease in E. A φ that creates a stable system, in which E
is monotonically decreasing, can be found by requiring that the two vectors be
orthogonal, then adding any small, positive constant ε to φ to convert the right angle into
an acute angle:

0=∆⋅∆ rgr WW

0))1((=∆⋅∆−+∆ rgrgd WWW φφ

rgrgd

rgrg

WWW

WW

∆⋅∆−∆
∆⋅∆−

=
)(

φ (4.10)

42

If this equation yields a φ outside the range [0,1], then the direct vector does make an
acute angle with the residual gradient vector, so a φ of 0 should be used for maximum
learning speed. If the denominator of φ is zero, this either means that E is at a local
minimum, or else it means that the direct algorithm and the residual gradient algorithm
yield weight-change vectors pointing in the same direction. In either case, a φ of 0 is
acceptable. If the equation yields a φ between zero and one, then this is the φ that causes
the mean squared Bellman residual to be constant. Theoretically, any φ above this value
will ensure convergence. Therefore, a practical implementation of a residual algorithm
should first calculate the numerator and denominator separately, then check whether the
denominator is zero. If the denominator is zero, then φ=0. If it is not, then the algorithm
should evaluate equation (4.10), add a small constant ε, then check whether the resulting
φ lies in the range [0,1]. A φ outside this range should be clipped to lie on the boundary
of this range.

The above defines residual algorithms in general. For the specific example used in
equations (4.6) and (4.7), the corresponding residual algorithm would be:

[][]

[][]

[][]∑
∑

∑

∇−∇−+−=

∇−∇−+−

∇−−+−−=

∆+∆−=∆

x

x

x

rgdr

xVxVxVxVR

xVxVxVxVR

xVxVxVR

)()'()()'(

)()'()()'(

)()()'()1(

)1(

WW

WW

W

WWW

γφγα

γγφα

γαφ

φφ

(4.11)

To implement this incrementally, rather than epoch-wise, the change in a particular
weight w after observing a particular state transition would be:

[][])()'()()'(xVxVxVxVR ww ∂
∂

∂
∂φγγα −−+−=∆w (4.12)

It is interesting that the residual algorithm turns out to be identical to the residual gradient
algorithm in this case, except that one term is multiplied by φ.

To find the marginally-stable φ using equation (4.10), it is necessary to have an estimate
of the epoch-wise weight-change vectors. These can be approximated by maintaining
two scalar values, wd and wrg, associated with each weight w in the function-

approximation system. These will be traces, averages of recent values, used to
approximate ∆Wd and ∆Wrg, respectively. The traces are updated according to:

[]
[]

w w R V x V x

V x

d d← − − + −

⋅ −∇

() (') ()

()

1 µ µ γ

W

(4.13)

43

[]
[]

w w R V x V x

V x V x

rg rg← − − + −

⋅ ∇ − ∇

() (') ()

(') ()

1 µ µ γ

γW W

(4.14)

where µ is a small, positive constant that governs how fast the system forgets. A value
for φ can be found using equation (4.15):

φ µ=
−

+
∑

∑
w w

w w w

d rg
w

d rg rg
w

()
(4.15)

If an adaptive φ is used, then there is no longer a guarantee of convergence, since the
traces will not give perfectly-accurate gradients. Convergence is guaranteed for
sufficiently-small φ, so a system with an adaptive φ might clip it to lie below some user-
selected boundary. Or it might try to detect divergence, and decrease φ whenever that
happens. Adaptive φ is just a heuristic.

 4.5 Stochastic Markov Chains
The residual algorithm for incremental value iteration in equations (4.12) and (4.15) was
derived assuming a deterministic Markov chain.

The derivation above was for a deterministic system. This algorithm does not require that
the model of the MDP be known, and it has guaranteed convergence to a local minimum
of the mean squared Bellman residual. That is because it would be doing gradient
descent on the expected value of a square, rather than a square of an expected value. If
the MDP were nondeterministic, then the algorithm would still be guaranteed to
converge, but it might not converge to a local minimum of the mean squared Bellman
residual. This might still be a useful algorithm, however, because the weights will still
converge, and the error in the resulting policy may be small if the MDP is only slightly
nondeterministic (deterministic with only a small amount of added randomness).

For a nondeterministic MDP, convergence to a local minimum of the Bellman residual is
only guaranteed by using equation (4.16), which also reduces to (4.12) in the case of a
deterministic MDP:

[]
[]

∆w R V x V x

V x V xw w

= − + −

−

α γ

φγ ∂
∂

∂
∂

(') ()

(') ()

1

2

(4.16)

Given a state x, it is necessary to generate two successor states, x1’ and x2’, each drawn
independently from the distribution defined by the MDP. This is necessary because an
unbiased estimator of the product of two random variables can be obtained by multiplying
two independently-generated unbiased estimators. These two independent successor

44

states are easily generated if a model of the MDP is known or is learned. It is also
possible to do this without a model, by storing a number of state-successor pairs that are
observed, and learning in a given state only after it has been visited twice. This might be
particularly useful in a situation where the learning system controls the MDP during
learning. If the learning system can intentionally perform actions to return to a given
state, then this might be an effective learning method. In any case, it is never necessary to
learn the type of detailed, mathematical model of the MDP that would be required by
backpropagation through time, and it is never necessary to perform the types of integrals
over successor states required by value iteration. It appears that residual algorithms often
do not require models of any sort, and on occasion will require only a partial model,
which is perhaps the best that can be done when working with completely-general
function-approximation systems.

 4.6 Extending from Markov Chains to MDPs
Residual algorithms can also be derived for reinforcement learning on MDPs that provide
a choice of several actions in each state. The derivation process is the same. Start with a
reinforcement learning algorithm that has been designed for use with a lookup table, such
as Q-learning. Find the equation that is the counterpart of the Bellman equation. This
should be an equation whose unique solution is the optimal function that is to be learned.
For example, the counterpart of the Bellman equation for Q-learning is

Q x u R Q x u
u

(,) max (' , ')
'

= + γ (4.17)

For a given MDP with a finite number of states and actions, there is a unique solution to
equation (4.17), which is the optimal Q-function. The equation should be arranged such
that the function to be learned appears on the left side, and everything else appears on the
right side. The direct algorithm is just backpropagation, where the left side is the output
of the network, and the right side is used as the "desired output" for learning. Given the
counterpart of the Bellman equation, the mean squared Bellman residual is the average
squared difference between the two sides of the equation. The residual gradient
algorithm is simply gradient descent on E, and the residual algorithm is a weighted sum
of the direct and residual gradient algorithms, as defined in equation (4.8).

 4.7 Residual Algorithms
Most reinforcement learning algorithms that have been suggested for prediction or control
have associated equations that are the counterparts of the Bellman equation. The optimal
functions that the learning system should learn are also unique solutions to the Bellman
equation counterparts. Given the Bellman equation counterpart for a reinforcement
learning algorithm, it is straightforward to derive the associated direct, residual gradient,
and residual algorithms. As before, φ can be chosen, or it can be adaptive, being
calculated in the same way. As can be seen from Table 4.1, all of the residual algorithms
can be implemented incrementally except for residual value iteration. Value iteration

45

requires that an expected value be calculated for each possible action, then the maximum
to be found. For a system with a continuum of states and actions, a step of value iteration
with continuous states would require finding the maximum of an uncountable set of
integrals. This is clearly impractical, and appears to have been one of the motivations
behind the development of Q-learning. Table 4.1 also shows that for a deterministic
MDP, all of the algorithms can be implemented without a model, except for residual
value iteration. This may simplify the design of a learning system, since there is no need
to learn a model of the MDP. Even if the MDP is nondeterministic, the residual
algorithms can still be used without a model, by observing x'1, then using x'2=x'1. That

approximation still ensures convergence, but it may force convergence to an incorrect
policy, even if the function-approximation system is initialized to the correct answer, and
the initial mean squared Bellman residual is zero. If the nondeterminism is merely a
small amount of noise in a control system, then this approximation may be useful in
practice. For more accurate results, it is necessary that x'1 and x'2 be generated

independently. This can be done if a model of the MDP is known or learned, or if the
learning system stores tuples (x,u,x'), and then changes the weights only when two tuples
are observed with the same x and u. Of course, even when a model of the MDP must be
learned, only two successor states need to be generated; there is no need to calculate large
sums or integrals as in value iteration.

46

Table 4.1. Four reinforcement learning algorithms, the counterpart of the
Bellman equation for each, and each of the corresponding residual
algorithms. The fourth, Advantage learning, is discussed in chapter 5.

Reinforcement
Learning

Algorithm

Counterpart of Bellman Equation (top)

Weight Change for Residual Algorithm (bottom)

TD(0) V x R V x() (')= + γ

∆w R V x V x V x V xr w w= − + − −α γ φγ ∂
∂

∂
∂()()(') () (') ()1 2

Value
Iteration

V x R V x
u

() max (')= + γ

∆w R V x V x R V x V xr
u w u w= − + − + −α γ φ γ∂

∂
∂

∂()()max (') () max (') ()

Q-learning

Q x u R Q x u
u

(,) max (' , ')
'

= + γ

∆w R Q x u Q x u Q x u Q x ur
u w u w= − + − −α γ φγ ∂

∂
∂

∂()()max (' , ') (,) max (' , ') (,)
' '

1 2

Advantage
learning

A x u R A x u A x ut

u
t t

u
(,) max (' , ') ()max (, ')

' '
= + + −γ ∆

∆ ∆
1 11

∆ ∆
∆ ∆

∆
∆ ∆

w R A x u A x u A x u

A x u A x u A x u

r
t

u
t t

u

t
w u

t t w u w

= − + + − −

+ − −⋅
α γ

φγ φ∂
∂

∂
∂

∂
∂

(())

()

max (' , ') ()max (, ') (,)

max (' , ') () max (, ') (,)

' '

' '

1
1 1

2
1 1

1

1

 4.8 Simulation Results
Figure 4.8 shows simulation results. The solid line shows the learning time for the star
problem in figure 4.2, and the dotted line shows the learning time for the hall problem in
figure 4.5. In the simulation, the direct method was unable to solve the star problem, and
the learning time appears to approach infinity as φ approaches approximately 0.1034. The
optimal constant φ appears to lie between 0.2 and 0.3. The adaptive φ was able to solve
the problem in time close to the optimal time, while the final value of φ at the end was
approximately the same as the optimal constant φ. For the hall problem from figure 4.5,
the optimal algorithm is the direct method, φ =0. In this case, the adaptive φ was able to
quickly reach φ=0, and therefore solved the problem in close to optimal time. In each
case, the learning rate was optimized to two significant digits, through exhaustive search.
Each data point was calculated by averaging over 100 trials, each with different initial
random weights. For the adaptive methods, the parameters µ=0.001 and ε=0.1 were used,

47

but no attempt was made to optimize them. When adapting, φ initially started at 1.0, the
safe value corresponding to the pure residual gradient method.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P hi

S tar problem

S tar (adaptive

Hall problem

Hall (adaptive

Figure 4.8. Simulation results for two MDPs

The lines in figure 4.8 clearly show that the direct method can be much faster than pure
residual gradient algorithms in some cases, yet can be infinitely slower in others. The
square and triangle, representing the residual gradient algorithm with adaptive φ,
demonstrate that the algorithm is able to automatically adjust to the problem at hand and
still achieve near-optimal results, at least for these two problems.

Further comparisons of direct and residual algorithms on high-dimensional, nonlinear,
problems are given in chapter 5, where the Advantage learning algorithm is proposed.
Advantage learning is one example of a residual algorithm

 4.9 Summary
Residual algorithms can do reinforcement learning with function approximation systems,
with guaranteed convergence, and can learn faster in some cases than both the direct
method and pure gradient descent (residual gradient algorithms). Local minima have not
been a problem for the problems shown here. The shortcomings of both direct and
residual gradient algorithms have been shown. It has also been shown, both analytically
and in simulation, that direct and residual gradient algorithms are special cases of residual
algorithms, and that residual algorithms can be found that combine the beneficial
properties of both. This allows reinforcement learning to be combined with general
function-approximation systems, with fast learning, while retaining guaranteed
convergence.

48

 5 Advantage learning: Learning with Small Time Steps

Q-learning is sometimes preferable to value iteration, such as in some problems that are
highly stochastic and poorly modele. Often, these problems deal with continuous time,
such as in some robotics and control problems, and differential games. Unfortunately, Q-
learning with typical function approximators is unable to learn anything useful in these
problems. This chapter introduces a new algorithm, Advantage learning, which is
exponentially faster than Q-learning for continuos-time problems. It is interesting that
this algorithm is one example of a residual algorithm, as defined in chapter 4. In fact, the
direct form of the algorithm wouldn't even have the convergence results that exist for Q-
learning on lookup tables. The contribution of this chapter therefore illustrates the
usefulness of the gradient-descent concept, as shown in chapter 4.

The empirical results are also interesting, as they involve a 6-dimensional, real-valued
state space, highly nonlinear, nonholonomic dynamics, continuous time, and optimal
game playing rather than just control. The results show a dramatic advantage of
Advantage learning over Q-learning (the latter couldn't learn at all), and residual
algorithms over direct (the latter couldn't learn at all).

 5.1 Introduction
In work done before the development of the residual algorithms, an algorithm called
advantage updating (Harmon, Baird, and Klopf, 1995) was proposed that seemed
preferable to Q-learning for continuous-time systems. It was shown in simulation that it
could learn the optimal policy for a linear-quadratic differential game using a quadratic
function approximation system. Unfortunately, it required two function approximators
rather than one, and there was no convergence proof for it, even for lookup tables. In
fact, under some update sequences (though not those suggested in the paper), it could be
shown to oscillate forever between the best and worst possible policies. This result came
from essentially forcing it to act like the actor-critic system in figure 2.2. This was an
unfortunate result, since in simulation it learned the optimal policy exponentially faster
than Q-learning as the time-step size was decreased. It was never clear how the algorithm
could be extended to solve its theoretical problems, nor was it clear how it could be
analyzed. This particular problem was actually the original motivation behind the
development of residual algorithms, described in chapter 4.

In this chapter, a new algorithm is derived: advantage learning, which retains the good
properties of advantage updating but requires only one function to be learned rather than
two, and which has guaranteed convergence to a local optimum. It is a residual
algorithm, so both the derivation and the analysis are much simpler than for the original
algorithm. This illustrates the power of the general gradient-descent concept for
developing and analyzing new reinforcement-learning algorithms.

49

This chapter derives the advantage learning algorithm and gives empirical results
demonstrating it solving a non-linear game using a general neural network. The game is a
Markov decision process (MDP) with continuous states and non-linear dynamics. The
game consists of two players, a missile and a plane; the missile pursues the plane and the
plane evades the missile. On each time step, each player chooses one of two possible
actions; turn left or turn right 90 degrees. Reinforcement is given only when the missile
either hits or misses the plane, which makes the problem difficult. The advantage
function is stored in a single-hidden-layer sigmoidal network. The reinforcement learning
algorithm for optimal control is modified for differential games in order to find the
minimax point, rather than the maximum. This is the first time that a reinforcement
learning algorithm with guaranteed convergence for general function approximation
systems has been demonstrated to work with a general neural network.

 5.2 Background

 5.2.1 Advantage updating

The advantage updating algorithm (Baird, 1993) is a reinforcement learning algorithm in
which two types of information are stored. For each state x, the value V(x) is stored,
representing an estimate of the total discounted return expected when starting in state x
and performing optimal actions. For each state x and action u, the advantage, A(x,u), is
stored, representing an estimate of the degree to which the expected total discounted
reinforcement is increased by performing action u rather than the action currently
considered best. It might be called the negative of regret for that action. The optimal

value function V*(x) represents the true value of each state. The optimal advantage

function A*(x,u) will be zero if u is the optimal action (because u confers no advantage

relative to itself) and A*(x,u) will be negative for any suboptimal u (because a suboptimal
action has a negative advantage relative to the best action).

Advantage updating has been shown to learn faster than Q-learning, especially for
continuous-time problems (Baird, 1993, Harmon, Baird, & Klopf, 1995). It is not a
residual algorithm, though, so there is no proof of convergence, even for lookup tables,
and there is no obvious way to reduce its requirements from two function approximators
to one.

 5.2.2 Advantage learning

Advantage learning improves on advantage updating by requiring only a single function
to be stored, the advantage function A(x,u), which saves memory and computation. It is a
residual algorithm, and so is guaranteed to converge to a local minimum of mean squared
Bellman residual. Furthermore, advantage updating requires two types of updates
(learning and normalization updates), while advantage learning requires only a single type
of update (the learning update). For each state-action pair (x,u), the advantage A(x,u) is
stored, representing the utility (advantage) of performing action u rather than the action

50

currently considered best. The optimal advantage function A*(x,u) represents the true
advantage of each state-action pair. The value of a state is defined as:

V * (x) = max
u

A* (x,u) (5.1)

The advantage A*(x,u) for state x and action u is defined to be:

tK

xVxVR
xVuxA

t

∆

−+
+=

∆)()'(
)(),(

**

**
γ

(5.2)

where γ∆t is the discount factor per time step, K is a time unit scaling factor, and < >
represents the expected value over all possible results of performing action u in state x to
receive immediate reinforcement R and to transition to a new state x’. Under this
definition, an advantage can be thought of as the sum of the value of the state plus the
expected rate at which performing u increases the total discounted reinforcement. For
optimal actions the second term is zero; for suboptimal actions the second term is
negative. Note that in advantage learning, the advantages are slightly different than in
advantage updating. In the latter, the values were stored in a separate function
approximator. In the former, the value is part of the definition, as seen in equation (5.2).

The Advantage function can also be written in terms of the optimal Q function, as in
equation (5.3).

tK

uxQxV
xVuxA

∆
−−=),()(

)(),(
**

** (5.3)

which suggests a simple graphical representation of how Advantages compare to Q
values, shown in figure 5.2.

51

Value

(State, Action)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3)

 V-A=10 (V-Q)

V-Q

Figure 5.1. Comparison of Advantages (black) to Q values (white)
in the case that 1/(k∆t)=10. The dotted line in each state
represents the value of the state, which equals both the maximum
Q value and the maximum Advantage. Each A is 10 times as far
from V as the corresponding Q.

In figure 5.1, The Q values (white) are close together in each state, but differ greatly from
state to state. During Q learning with a function approximator, small errors in the Q
values will have large effects on the policy. The Advantages (black) are well distributed,
and small errors in them will not greatly affect the policy. As ∆t shrinks, the Q values all
approach their respective dotted lines, while the Advantages do not move. All of this is
similar to what happened in Advantage updating, but in Advantage learning it is simpler,
since there is no need to store a separate value function. And the latter is guaranteed to
converge. Not surprisingly, learning can be much faster than Q learning, as can be seen
by comparing the algorithms on a linear quadratic regulator (LQR) problem..

The LQR problem is as follows. At a given time t, the state of the system being
controlled is the real value xt. The controller chooses a control action ut which is also a
real value. The dynamics of the system are:

tt ux =�

The rate of reinforcement to the learning system, r(xt,ut), is

22),(tttt uxuxr −−=

52

Given some positive discount factor γ<1, the goal is to maximize the total discounted
reinforcement:

γ t
r (x t , u t) dt

0

∞

∫

A discrete-time controller can change its output every ∆t seconds, and its output is
constant between changes. The discounted reinforcement received during a single time
step is:

R ∆ t
(x

t
, u

t
) = γ

τ − t r (x τ , u τ) d τ
t

t + ∆ t

∫ = γ
τ − t − (x τ + τ u τ)

2 − u τ

2 () d τ
t

t + ∆ t

∫

and the total reinforcement to be maximized is:

γ ∆ t () i R ∆ t
(x

i ∆ t
,

i = 0

∞

∑ u
i ∆ t

)

The results of comparison experiments on this LQR problem are in figure 5.1:

53

Figure 5.2. Advantages allow learning whose speed is independent
of the step size, while Q learning learns much slower for small step
sizes.

When ∆t=1, it reduces to Q learning, and so takes the same amount of time to learn. As
∆t goes to zero, the target Advantage function A* does not change, while the target Q
function Q* becomes almost flat in the action direction. That makes Q very susceptible
to noise, and causes it to take much longer to learn.

 5.3 Reinforcement Learning with Continuous States

 5.3.1 Direct Algorithms

For predicting the outcome of a Markov chain (a degenerate MDP for which there is only
one possible action in each state), an obvious algorithm is an incremental form of value
iteration, which is defined as:

() [])'()(1)(xVRxVxV γαα ++−← (5.4)

If V(x) is represented by a function-approximation system other than a look-up table,
update (5.4) can be implemented directly by combining it with the backpropagation
algorithm (Rumelhart, Hinton, & Williams, 86). For an input x, the output of the
function-approximation system would be V(x), the “desired output” used for training
would be R+γV(x’), and all of the weights would be adjusted through gradient descent to

54

make the actual output closer to the desired output. Equation (5.4) is exactly the TD(0)
algorithm, and could also be called the direct implementation of incremental value
iteration, Q-learning, and advantage learning.

 5.3.2 Residual Gradient Algorithms

Reinforcement learning algorithms can be guaranteed to converge for lookup tables, yet
be unstable for function-approximation systems that have even a small amount of
generalization when using the direct implementation (Boyan, 95). To find an algorithm
that is more stable than the direct algorithm, it is useful to specify the exact goal for the
learning system. For the problem of prediction on a deterministic Markov chain, the goal
can be stated as finding a value function such that, for any state x and its successor state
x’, with a transition yielding immediate reinforcement R, the value function will satisfy
the Bellman equation:

V(x) = R+ γV(x') (5.5)

For a given value function V, and a given state x, the Bellman residual is defined to be the
difference between the two sides of the Bellman equation. The mean squared Bellman
residual for an MDP with n states is therefore defined to be:

E = 1

n
R+γV(x') − V(x)[]2

x

∑ (5.6)

Residual gradient algorithms change the weights in the function-approximation system by
performing gradient descent on the mean squared Bellman residual, E. This is called the
residual gradient algorithm. The residual gradient algorithm and a faster version called
the residual algorithm are described in chapter 4.

The counterpart of the Bellman equation for advantage learning is:

)',(
1

1
1

)','(),(*
max

*
max

*

'

uxA
tKtK

uxARuxA
uu

t

∆
−+

∆
+= ∆γ (5.7)

If A(x,u) is an approximation of A*(x,u), then the mean squared Bellman residual, E, is:

2

maxmax)',()',(
1

1
1

)','(
''

 −

∆
−+

∆
+= ∆ uxAuxA

tKtK
uxARE

uu

tγ (5.8)

where the inner <> is the expected value over all possible results of performing a given
action u in a given state x, and the outer <> is the expected value over all possible states
and actions.

55

 5.4 Differential Games
Differential games (Isaacs, 1965) are played in continuous time, or use sufficiently small
time steps to approximate continuous time. Both players evaluate the given state and
simultaneously execute an action, with no knowledge of the other player's selected action.

The value of a game is the long-term, discounted reinforcement if both opponents play
the game optimally in every state. Consider a game in which player A tries to minimize
the total discounted reinforcement, while the opponent, player B, tries to maximize the
total discounted reinforcement. Given the advantage A(x,uA,uB) for each possible action
in state x, it is useful to define the minimax and maximin values for state x as:

minimax(x)= min
uA

max
uB

A x,u
A
,u

B
() (5.9)

maximin(x)= max
uB

min
uA

A x,u
A
,u

B
() (5.10)

If the minimax equals the maximin, then the minimax is called a saddlepoint and the
optimal policy for both players is to perform the actions associated with the saddlepoint.
If a saddlepoint does not exist, then the optimal policy is stochastic if an optimal policy
exists at all. If a saddlepoint does not exist, and a learning system treats the minimax as if
it were a saddlepoint, then the system will behave as if player A must choose an action on
each time step, and then player B chooses an action based upon the action chosen by A.
For the algorithms described below, a saddlepoint is assumed to exist. If a saddlepoint
does not exist, this assumption gives a slight advantage to player B.

 5.5 Simulation of the Game

 5.5.1 Advantage learning

During training, a state is chosen from a uniform random distribution on each learning
cycle. The vector of weights in the function approximation system, W, is updated
according to equation (5.11) on each time step.

∆W=−α R+γ ∆tAmin max(x' ,u)() 1
∆tK

+ 1− 1
∆tK

 Amin max(x,u)−A(x,u)

• φγ ∆t
∂

∂W
Amin max(x' ,u)

1
∆tK

+φ 1− 1
∆tK

∂
∂W

Amin max(x,u)−
∂

∂W
A(x,u)

(5.11)

The parameter φ is a constant that controls a trade-off between pure gradient descent
(when φ equals 0) and a fast direct algorithm (when φ equals 1). φ can change adaptively
by calculating two values, wd and wrg. These are traces, averages of recent values,
updated according to:

56

wd ← (1− µ)wd − µ R+ γ ∆t A
min max

(x' ,u)()/ ∆tK + 1−1 /∆tK()Amin max
(x,u)[]

• −
∂

∂w
A

min max
(x,u)

(5.12)

wrg ← (1− µ)wrg − µ
R+ γ ∆ t A

min max
(x' ,u)()/ ∆tK +

1−1 /∆tK()A
min max

(x, u) − A(x,u)

•
γ ∆t ∂

∂w
A

min max
(x' ,u)

 / ∆tK() +

1−1/ ∆tK() ∂
∂w

A
min max

(x,u) − ∂
∂w

A(x,u)

(5.13)

where µ was a small, positive constant that governed how fast the system forgets. On
each time step a stable φ is calculated by using equation (5.14). This ensures convergence
while maintaining fast learning:

φ =
wdwrg

w

∑
(wd − wrg)wrg

w

∑ + µ (5.14)

 5.5.2 Game Definition

The problem is a differential game with a missile pursuing a plane, similar to other
pursuit games (Rajan, Prasad, and Rao, 1980, Millington 1991). The action performed by
the missile is a function of the state, which is the position and velocity of both players.
The action performed by the plane is a function of the state and the action of the missile.

The game is a Markov game with continuous states and non-linear dynamics. The state x
is a vector (xm,xp) composed of the state of the missile and the state of the plane, each of
which are composed of the position and velocity of the player in two-dimensional space.
The action u is a vector (um,up) composed of the action performed by the missile and the
action performed by the plane, each of which is a scalar value; 0.5 indicates a 90 degree
turn to the left, and -0.5 indicates a 90 degree turn to the right. The next state xt+1 is a
non-linear function of the current state xt and action ut. The speed of each player is fixed,
with the speed and turn radius of the missile twice that of the plane. On each time step
the heading of each player is updated according to the action chosen, the velocity in both
the x and y dimensions is computed for each player, and the positions of the players are
updated.

The reinforcement function R is a function of the distance between the players. A
reinforcement of 1 is given when the Euclidean distance between the players grows larger
than 2 units (plane escapes). A reinforcement of -1 is given when the distance grows

57

smaller than 0.25 units (missile hits plane). No reinforcement is given when the distance
is in the range [0.25,2]. The missile seeks to minimize reinforcement, while the plane
seeks to maximize reinforcement.

The advantage function is approximated by a single-hidden-layer neural network with 50
hidden nodes. The hidden-layer nodes each have a sigmoidal activation function whose
output lies in the range [-1,1]. The output of the network is a linear combination of the
outputs of the hidden-layer nodes with their associated weights. To speed learning a
separate adaptive learning rate was used for each weight in the network. There are 6
inputs to the network. The first 4 inputs describe the state and are normalized to the
range [-1,1]. They consist of the difference in positions and velocities of the players in
both the x and y dimensions. The remaining inputs describe the action to be taken by
each player; 0.5 and -0.5 indicate left and right turns respectively.

 5.6 Results
Experiments were formulated to accomplish two objectives. The first objective was to
determine to what degree advantage learning could learn the optimal policy for the
missile/aircraft system. The second objective was to compare the performances of
advantage learning when implemented in the residual gradient form, in the direct form,
and using weighted averages of the two by using values of φ in the range [0,1].

In Experiment 1, the residual form of advantage learning learned the correct policy after
800,000 training cycles. The missile learned to pursue the plane, and the plane learned to
evade the missile. Interesting behavior was exhibited by both players under certain initial
conditions. First, the plane learned that in some cases it is able to indefinitely evade the
missile by continuously flying in circles within the missile's turn radius. Second, the
missile learned to anticipate the position of the plane. Rather than heading directly
toward the plane, the missile learned to lead the plane under appropriate circumstances.

58

Figure 5.3. The first snapshot (pictures taken of the actual
simulator) demonstrates the missile leading the plane and, in the
second snapshot, ultimately hitting the plane.

Figure 5.4. The first snapshot demonstrates the ability of the plane
to survive indefinitely by flying in continuous circles within the
missile's turn radius. The second snapshot demonstrates the
learned behavior of the plane to turn toward the missile to increase
the distance between the two in the long term, a tactic used by
pilots.

In Experiment 2, different values of φ were used for the weighting factor in residual
advantage learning. Six different experiments were run, each using identical parameters
with the exception of the weighting factor φ. Figure 5.5 presents the results of these
experiments. The dashed line is the error level after using an adaptive φ. A φ of 1 yields
advantage learning in the residual gradient form, while a φ of 0 yields advantage learning
implemented in the direct form.

59

0

5

10
15

20

25

1 0.75 0.5 0.25 0

Mean
Squared
Bellman
Error

phi

adaptive phi
fixed phi

Figure 5.5: φ comparison. Final Bellman error after using various
values of the fixed φ (solid), or using the adaptive φ (dotted).

 5.7 Summary
This chapter shows the power of the gradient-descent concept by deriving a new, residual
algorithm. Advantage updating was a useful algorithm, though it had no convergence
proof, and was inelegant. Residual algorithms allowed the development of Advantage
learning, which was the same as Advantage updating in practice, but had better
theoretical properties, and also used less computational and memory resources. It was
compared on a test problem that is highly non-linear, with continuous states. In general,
non-linear problems of this type are difficult to solve with classical game theory and
control theory, and therefore appear to be good applications for reinforcement learning. It
was shown that the residual algorithm with adaptive φ was able to perform as well as with
the optimal φ. Furthermore, the policy learned by the system yielded behavior resembling
the strategies used by pilots. Neither Q-learning nor a direct form of Advantage learning
was able to learn anything at all, which suggests both the utility of Advantage learning for
continuous time, and the utility of residual algorithms in general.

60

 6 VAPS: Value and Policy Search, and Guaranteed Convergence
for Greedy Exploration

This chapter proposes VAPS, a generalization of residual algorithms that allows the
exploration policy to change during learning. In addition, it allows a learning system to
forget about values altogether, and just search in policy space directly. In the field of
reinforcement learning, algorithms that use values tend to be very separate from those that
do policy search, so it is surprising that a single family of algorithms could do both.
However, VAPS is a gradient-descent algorithm, and any two gradient-descent algorithms
can always be combined by summing their error functions. Therefore, it can handle both
Values And Policy Search (VAPS) simultaneously, with just a single function
approximator, not a separate ones for values and policies. This result is only possible
because the algorithms are derived from first principles using a gradient-descent
technique. Simulation results suggest that it is useful to combine these two approaches
that have traditionally resided in entirely different camps.

 6.1 Convergence Results
Many reinforcement-learning algorithms are known that use a parameterized function
approximator to represent a value function, and adjust the weights incrementally during
learning. Examples include Q-learning, SARSA, and advantage learning (chapter 5).
There are simple MDPs where the original form of these algorithms fails to converge, as
demonstrated in chapter 3, and summarized in Table 6.1. For the cases with √, the
algorithms are guaranteed to converge under reasonable assumptions such as decaying
learning rates. For the cases with X, there are known counterexamples where it will
either diverge or oscillate between the best and worst possible policies, which have values
that are very different. This can happen even with infinite training time and slowly-
decreasing learning rates (Baird, 95, Gordon, 96). If a box on the chart contains an X,
then it will never be possible to prove that all situations in that box avoid disaster. It may
be possible, however, that future research will prove that some subset of the box does
have guaranteed convergence or guaranteed avoidance of disastrous oscillations. Perhaps
new classes of function approximators, or particular types of MDPs will be shown to
have this property. At the moment, though, the chart reflects the results that are known.

Table 6.1 has three columns, corresponding to three types of training example
distributions. In a fixed distribution, each transition is seen a certain percentage of the
time. This might be done by drawing transitions randomly from a database of previously-
recorded transitions. It could also be done by training on transitions as they are seen
while following a fixed, stochastic exploration policy. It might even be done by sorting
all possible transitions into some order, then making a sweep through the list, then
resorting and repeating, as in prioritized sweeping.

In on-policy training, the fixed distribution corresponds to how often the transitions are
seen while following a fixed, stochastic policy. This restriction on the distribution allows

61

convergence to be guaranteed for pure prediction problems (Markov Chains), with linear
function approximators. Unfortunately, it doesn't allow convergence proofs for any other
case on the chart.

In a mostly-greedy distribution, the transitions are generated by following trajectories.
These trajectories are generated by following a stochastic policy, but the policy itself
changes over time as a result of learning. This will be the case for almost any real-world
reinforcement-learning problem, since it is generally useful to train on the same types of
states during learning as those that will be seen when using the learned policy. If learning
is done entirely with some fixed policy, then the learned policy is likely to be different,
and the two are likely to spend time in different regions of state space. That is why it is
usually necessary to allow the policy to change. For a very stochastic problem like
backgammon, the policy can simply be greedy: during learning, the system can always
choose the action which appears optimal according its current value function. For a more
deterministic problem, like chess, it would be better to be mostly-greedy, occasionally
choosing actions that are not greedy with respect to the current values, just to ensure
sufficient exploration. Unfortunately, this third column has known counterexamples in
almost every case.

The rows of the chart or divided into three sections: Markov chains, MDPs, and
POMDPs. Markov chains are pure prediction, with no policy, so there is no entry for
usually-greedy distributions on Markov chains. The MDP rows are for problems with the
Markov property, where the next state distribution depends only on the current state and
action. The POMDP rows are for those problems lacking this property.

Within each type of problem, there are four rows corresponding to different types of
function approximators. Lookup tables are simple, and have guaranteed convergence for
MDPs and Markov chains. For POMDPs, however, even lookup tables are not
guaranteed to converge with existing algorithms (Gordon, 96). For linear function
approximators, where the value is a linear function of the weights and a possibly-
nonlinear function of the states and actions, there are diverging counterexamples for most
cases. If the problem is pure prediction (a Markov chain) and the distribution is on-
policy, then convergence is guaranteed (Sutton, 1988). In all other cases, there are
counterexamples that diverge. For nonlinear function approximators, even on-policy
training can diverge on pure prediction problems (Tsitsiklis & Van Roy, 1997). General,
nonlinear function approximators can diverge in every case. Since even linear function
approximators can diverge for MDPs and POMDPs, more general approximators such as
neural networks can also diverge. There is, however, a class of function approximators
that have guaranteed convergence for MDPs, though not POMDPs (Gordon, 1999).
These averagers are systems such as K-nearest neighbors where the output for a given
input is an average of the outputs of stored data. It would not include locally-weighted
regression, where an extrapolated value can be greater than all of the data points. It is
also important to note that the chart only refers to incremental algorithms using value
functions that slowly change weights in a function approximator. It does not include
algorithms that solve MDPs directly using linear programming (Gordon, 1999), or pure
policy-search methods such as backpropagation through time.

62

It is interesting that the chart gives the same result for MDPs with linear function
approximators as for POMDPs with lookup tables. That is because these two cases are
actually the same situation. A linear function approximator can be viewed as a system
that first performs some possibly-nonlinear function on the state or state-action pair,
possibly even changing their dimensionality. Then, it uses a lookup table on the
transformed state. If the initial, fixed transformation is thought of as part of the
environment rather than part of the learning system, then this problem reduces to lookup
tables on POMDPs.

Each X in the first two columns can be changed to a √ and made to converge by using a
modified form of the algorithm, the residual form described in chapter 4. However, this
is only possible when learning with a fixed training distribution, and that is rarely
practical. For most large problems, it is useful to explore with a policy that is usually-
greedy with respect to the current value function, and that changes as the value function
changes. In that case (the rightmost column of the chart), the current convergence
guarantees are not very good.

One way to guarantee convergence in all three columns is to modify the algorithm so that
it is performing stochastic gradient descent on some average error function, where the
average is weighted by state-visitation frequencies for the current usually-greedy policy.
Then the weighting changes as the policy changes. It might appear that this gradient is
difficult to compute. Consider Q-learning exploring with a Boltzman distribution that is
usually greedy with respect to the learned Q function. It seems difficult to calculate
gradients, since changing a single weight will change many Q values, changing a single Q
value will change many action-choice probabilities in that state, and changing a single
action-choice probability may affect the frequency with which every state in the MDP is
visited. Although this might seem difficult, it is not. Surprisingly, unbiased estimates of
the gradients of visitation distributions with respect to the weights can be calculated
quickly, and the resulting algorithms can put a √ in every case in Table 6.1.

63

Table 6.1. Current convergence results for incremental, value-based RL
algorithms. Residual algorithms changed every X in the first two columns

to √. The new VAPS form of the algorithms changes every X to a √.

 6.2 Derivation of the VAPS equation
Consider a sequence of transitions observed while following a particular stochastic policy
on an MDP. Let st ={x0,u0,R0, x1,u1,R1, … xt-1,ut-1,Rt-1, xt,ut,Rt} be the sequence of states,
actions, and reinforcements up to time t, where performing action ui in state xi yields
reinforcement Ri and a transition to state xi+1. The stochastic policy may be a function of

Fixed
distribution
(on-policy)

Fixed
distribution

Usually-
greedy

distribution

Lookup table √ √

Markov Averager √ √

chain Linear √ X

Nonlinear X X

Lookup table √ √ √

MDP Averager √ √ X

Linear X X X

Nonlinear X X X

Lookup table X X X

POMDP Averager X X X

Linear X X X

Nonlinear X X X

√=convergence guaranteed
X=counterexample is known that either diverges or oscillates between
the best and worst possible policies.

64

a vector of weights w. Without loss of generality, assume the MDP has a single start state
named x0. If the MDP has terminal states, and xi is a terminal state, then xi+1=x0. Let St

be the set of all possible sequences from time 0 to t. Let e(st) be a given error function
that calculates an error on each time step, such as the squared Bellman residual at time t,
or some other error occurring at time t. Note that the error at time t can potentially be a
function of everything that has happened so far on the sequence. If e is a function of the
weights, then it must be a smooth function of the weights. Consider a period of time
starting at time 0 and ending with probability P(end | st) after the sequence st occurs. The
probabilities must be such that the expected squared period length is finite. Let B be the
expected total error during that period, where the expectation is weighted according to the
state-visitation frequencies generated by the given policy:

∑ ∑ ∑
∞

= ∈

=
0

T)()Sectory after traj at time ends period(
T TTs is

iseTPB
S

∑ ∑
∞

= ∈

=
0

)()(
t tts

tt sPse
S

(6.1)

where sT is a sequence from time 0 to time T, ST is the set of all possible such sequences,
the inner summation is over each si which is a subsequence of sT going from time 0 to
time i (for all i from 0 to T), and P is:

[]∏
−

=
+ −=

1

0
1)|(1)|()|()|()|()|()(

t

i
iiiiiiittttt sendPsxPsRPsuPsRPsuPsP (6.2)

Note that on the first line, for a particular st, the error e(st) will be added in to B once for
every sequence that starts with st. Each of these terms will be weighted by the probability
of a complete trajectory that starts with st. The sum of the probabilities of all trajectories
that start with st is simply the probability of st being observed, since the period is assumed
to end eventually with probability one. So ref Error! Bookmark not defined. equals
(6.1). Then (6.2) is the probability of the sequence, of which only the P(ui|si) factor might
be a function of w. If so, this probability must be a smooth function of the weights and
nonzero everywhere. The partial derivative of B with respect to w, a particular element of
the weight vector w, is:

[]
∑ ∑ ∑

∞

= ∈ = −−

−−∂
∂

+

∂
∂=

∂
∂

0 1 11

11

)|(

|(
)()()()(

t s

t

j jj

jjw
tttt

tt
suP

suP
sPsesPse

w
B

w S

()∑ ∑ ∑
∞

= ∈ =
−−∂

∂
∂
∂

+=

0 1
11)|(ln)()()(

t s

t

j
jjwttwt

tt

suPsesesP
S

(6.3)

65

Summing (6.3) over an entire period gives an unbiased estimate of B, the expected total
error during a period. An incremental algorithm to perform stochastic gradient descent
on B is the weight update given on the left side of Table 6.2, where the summation over
previous time steps is replaced with a trace Tt for each weight. This algorithm is more
general than previous algorithms of this form, in that e can be a function of all previous
states, actions, and reinforcements, rather than just the current reinforcement. This is
what allows VAPS to do both value and policy search.

Every algorithm proposed in this chapter is a special case of the VAPS equation on the
left side of Table 6.2. Note that no model is needed for this algorithm. The only
probability needed in the algorithm is the policy, not the transition probability from the
MDP. This is stochastic gradient descent on B, and the update rule is only correct if the
observed transitions are sampled from trajectories found by following the current,
stochastic policy. Both e and P should be smooth functions of w, and for any given w
vector, e should be bounded. The algorithm is simple, but actually generates a large class
of different algorithms depending on the choice of e and when the trace is reset to zero.
For a single sequence, sampled by following the current policy, the sum of ∆w along the
sequence will give an unbiased estimate of the true gradient, with finite variance.
Therefore, during learning, if weight updates are made at the end of each trial, and if the
weights stay within a bounded region, and the learning rate approaches zero, then B will
converge with probability one. Adding a weight-decay term (a constant times the 2-norm
of the weight vector) onto B will prevent weight divergence for small initial learning
rates. There is no guarantee that a global minimum will be found when using general
function approximators, but at least it will converge. This is true for backpropagation as
well.

Table 6.2. The general VAPS algorithm (left), and several instantiations
of it (right). This single algorithm includes both value-based and policy-
search approaches and their combination, and gives guaranteed
convergence in every case.

[]111
2

2
1 ,(),()(−−− −+= ttttttSARSA uxQuxQREse γ

[]111
2

2
1 ,(),(max)(−−−− −+= ttt

u
ttlearningQ uxQuxQREse γ

[]tttwt Tsesew)()(+−=∆ ∂
∂α

()

−+

−+
=

−
∆

−−
∆

−

),(max1

),(),(max
)(

1

111
2

2
1

uxA

uxAuxAR
Ese

t
uK

t

ttK
t

t
u

t

tadvantage

γ

)|(ln(11 −−∂
∂=∆ ttwt suPT) []

2

112
1)()(max)(

1

 −+= −−−

−
ttt

u
titerationvalue xVxVREse

t

γ

() ()t
t

tSARSAtpolicySARSA Rbsese γββ −+−=−)(1)(

66

 6.3 Instantiating the VAPS Algorithm
Many reinforcement-learning algorithms are value-based; they try to learn a value
function that satisfies the Bellman equation. Examples are Q-learning, which learns a
value function, actor-critic algorithms, which learn a value function and the policy that is
greedy with respect to it, and TD(1), which learns a value function based on future
rewards. Other algorithms are pure policy-search algorithms; they directly learn a policy
that returns high rewards. These include REINFORCE (Williams, 1987, Williams,
1987b, Williams, 1988), backpropagation through time, learning automata, and genetic
algorithms. The algorithms proposed here combine the two approaches: they perform
Value And Policy Search (VAPS). The general VAPS equation is instantiated by
choosing an expression for e. This can be a Bellman residual (yielding value-based), the
reinforcement (yielding policy-search), or a linear combination of the two (yielding Value
And Policy Search). The single VAPS update rule on the left side of Table 6.2 generates
a variety of different types of algorithms, some of which are described in the following
sections.

 6.3.1 Reducing Mean Squared Residual Per Trial

If the MDP has terminal states, and a trial is the time from the start until a terminal state
is reached, then it is possible to minimize the expected total error per trial by resetting the
trace to zero at the start of each trial. Then, a convergent form of SARSA, Q-learning,
incremental value iteration, or advantage learning can be generated by choosing e to be
the squared Bellman residual, as shown on the right side of Table 6.2. In each case, the
expected value is taken over all possible (xt,ut,Rt) triplets, given st-1. The policy must be a
smooth, nonzero function of the weights. So it could not be an ε-greedy policy that
chooses the greedy action with probability (1-ε) and chooses uniformly otherwise. That
would cause a discontinuity in the gradient when two Q values in a state were equal.
However, the policy could be something that approaches ε-greedy as a positive
temperature c approaches zero:

() ()∑ +
+−+=

'

/)',(

/),(

1

1
1)|(

u

cuxQ

cuxQ

e

e

n
xuP εε

(6.4)

where n is the number of possible actions in each state. Note that this is just an example,
not part of the definition of the VAPS algorithm. VAPS is designed to work with any
smooth function approximator and any smooth exploration policy. This particular
exploration policy was used in the simulations shown here, but any other smooth function
could have been used instead.

For each instance in Table 6.2 other than value iteration, the gradient of e can be
estimated using two, independent, unbiased estimates of the expected value. For example:

67

 −= −−),()','()()(11 tttttSARSAtSARSA uxQ

w
uxQ

w
sese

w ∂
∂

∂
∂γφ

∂
∂

�

(6.5)

When φ=1, this is an estimate of the true gradient. When φ<1, this is a residual
algorithm, as described in chapter 4, and it retains guaranteed convergence, but may learn
more quickly than pure gradient descent for some values of φ. Note that the gradient of
Q(x,u) at time t uses primed variables. That means a new state and action at time t were
generated independently conditioned on the state and action at time t-1. Of course, if the
MDP is deterministic, then the primed variables are the same as the unprimed. If the
MDP is nondeterministic but the model is known, then the model must be evaluated one
additional time to get the other state. If the model is not known, then there are three
choices. First, a model could be learned from past data, and then evaluated to give this
independent sample. Second, the issue could be ignored, simply reusing the unprimed
variables in place of the primed variables. This may affect the quality of the learned
function (depending on how random the MDP is), but doesn’t stop convergence, and may
be an acceptable approximation in practice. In fact, this is recommended for POMDPs.
Third, all past transitions could be recorded, and the primed variables could be found by
searching for all the times (xt-1,ut-1) has been seen before, and randomly choosing one of
those transitions and using its successor state and action as the primed variables. This is
equivalent to learning the certainty equivalence model, and sampling from it, and so is a
special case of the first choice. For extremely large state-action spaces with many starting
states, this is likely to give the same result in practice as simply reusing the unprimed
variables as the primed variables. Note that when weights do not affect the policy at all,
these algorithms reduce to standard residual algorithms.

It is also possible to reduce the mean squared residual per step, rather than per trial. This
is done by making period lengths independent of the policy, so minimizing error per
period will also minimize the error per step. For example, a period might be defined to
be the first 100 steps, after which the traces are reset, and the state is returned to the start
state. Note that if every state-action pair has a positive chance of being seen in the first
100 steps, then this will not just be solving a finite-horizon problem. It will be actually
be solving the discounted, infinite-horizon problem, by reducing the Bellman residual in
every state. However, the weighting of the residuals will be determined only by what
happens during the first 100 steps. Many different problems can be solved by the VAPS
algorithm by instantiating the definition of "period" in different ways. These are not
different algorithms for solving the same problem. Rather, they are algorithms for
solving different problems, with different metrics. When searching for a good value
function, it is clearly good to find one with zero Bellman residual everywhere, but if that
is not possible, then it is not clear how best to weight the residuals. The goal might be to
reduce average error per trial or average error per step. Either way, it is easy to derive a
VAPS algorithm that tries to optimize that criterion.

68

 6.3.2 Policy-Search and Value-Based Learning

It is also possible to add a term that tries to maximize reinforcement directly. For
example, e could be defined to be eSARSA-policy rather than eSARSA. from Table 6.2, and the
trace reset to zero after each terminal state is reached. The constant b does not affect the
expected gradient, but does affect the noise distribution, as discussed in (Williams, 88).
When β=0, the algorithm will try to learn a Q function that satisfies the Bellman
equation, just as before. When β=1, it directly learns a policy that will minimize the
expected total discounted reinforcement. The resulting “Q function” may not even be
close to containing true Q values or to satisfying the Bellman equation, it will just give a
good policy. When β is in between, this algorithm tries to both satisfy the Bellman
equation and give good greedy policies. A similar modification can be made to any of the
algorithms in Table 6.2. In the special case where β=1, this algorithm reduces to the
REINFORCE algorithm (Williams, 1988). REINFORCE has been rederived for the
special case of gaussian action distributions (Tresp & Hofman, 1995), and extensions of it
appear in (Marbach, 1998). This case of pure policy search is particularly interesting,
because for β=1, there is no need for any kind of model or of generating two independent
successors. Other algorithms have been proposed for finding policies directly, such as
those given in (Gullapalli, 92) and the various algorithms from learning automata theory
summarized in (Narendra & Thathachar, 89). The VAPS algorithms proposed here
appears to be the first one unifying these two approaches to reinforcement learning,
finding a value function that both approximates a Bellman-equation solution and directly
optimizes the greedy policy.

A

B

 start

 end

1

2
1

2

2

100

1000

10000

0 0.2 0.4 0.6 0.8
Beta

T
ria

ls

Figure 6.1. A POMDP and the number of trials needed to learn it
vs. β. A combination of policy-search and value-based RL
outperforms either alone.

Figure 6.1 shows simulation results for the combined algorithm. A run is said to have
learned when the greedy policy is optimal for 1000 consecutive trials. The graph shows
the average plot of 100 runs, with different initial random weights between ±10-6. The
learning rate was optimized separately for each β value. R=1 when leaving state A, R=2

69

when leaving state B or entering end, and R=0 otherwise. γ=0.9. The algorithm used was
the modified Q-learning from Table 6.2, with exploration as in equation 13, and ϕ=c=1,
b=0, ε=0.1. States A and B share the same parameters, so ordinary SARSA or greedy Q-
learning could never converge, as shown in (Gordon, 96). When β=0 (pure value-based),
the new algorithm converges, but of course it cannot learn the optimal policy in the start
state, since those two Q values learn to be equal. When β=1 (pure policy-search),
learning converges to optimality, but slowly, since there is no value function caching the
results in the long sequence of states near the end. By combining the two approaches, the
new algorithm learns much more quickly than either alone.

It is interesting that the VAPS algorithms described in the last three sections can be
applied directly to a Partially Observable Markov Decision Process (POMDP), where the
true state is hidden, and all that is available on each time step is an ambiguous
“observation”, which is a function of the true state. Normally, an algorithm such as
SARSA only has guaranteed convergence when applied to an MDP. The VAPS
algorithms will converge in such cases. In fact, simulation results on five particular
POMDPs (Peshkin, Meuleau, & Kaelbling, 1999) showed VAPS outperforming
SARSA(λ) on three problems (including that from in figure 6.1, with the same function
approximator but different exploration policy), and was equally good on two.

 6.4 Summary
A new family of algorithms was presented: VAPS. Special cases of it give new
algorithms corresponding to Q-learning, SARSA, and advantage learning, but with
guaranteed convergence for a wider range of problems than was previously possible,
including POMDPs. For the first time, these can be guaranteed to converge to a local
minimum, even when the exploration policy changes during learning. Other special cases
allow new approaches to reinforcement learning, where there is a tradeoff between
satisfying the Bellman equation and improving the greedy policy. For one MDP,
simulation showed that this combined algorithm learned more quickly than either
approach alone. This unified theory, unifying for the first time both value-based and
policy-search reinforcement learning, is of theoretical interest, and also was of practical
value for the simulations performed. Future research with this unified framework may be
able to empirically or analytically address the old question of when it is better to learn
value functions and when it is better to learn the policy directly. It may also shed light on
the new question, of when it is best to do both at once.

70

 7 Conclusion

Gradient descent is a powerful concept that has been underused in reinforcement learning.
By rederiving all of the common algorithms with stochastic gradient-descent techniques,
it is possible to guarantee their convergence, and to speed them up in practice. It is also
possible to derive entirely new algorithms. It was gradient descent that made Advantage
learning possible, which is much better than Q-learning for continuous-time problems
with small time steps. It even allowed VAPS to be derived, which allows adaptive
exploration policies, combines the two main approaches to reinforcement learning into a
single algorithm in a natural way, and has shown advantages in practice as well as theory.
The techniques proposed here, such as residual algorithms (which are faster than pure
gradient descent) and the smoothing function (which allows powerful theoretical results
to be derived) are all due to the underlying concept of gradient descent. Because all of
these ideas were based on a simple derivation from gradient descent on simple error
functions, it is possible to combine them with each other, as was done in VAPS, to apply
them to general function approximators, to analyze them, and to implement them on
simple hardware.

 7.1 Contributions
This thesis has proposed a general, unifying concept for reinforcement learning using
function approximators and incremental, online learning. The residual and VAPS
families of algorithms include a new counterpart to most of the existing algorithms
commonly in use. The Advantage updating algorithm was proposed, though it had many
major flaws. The power of residual algorithms was further illustrated by deriving
Advantage learning from Advantage updating, removing all of the obvious flaws. The
power of VAPS was further illustrated by combining values with policy search (hence the
name). The figure 7.1 illustrates how these contributions build on each other, where each
piece is supported by one or more other pieces. Each box lists one or more contributions,
except for the gray box, which contains prior algorithms that already existed.

71

Gradient Descent

Residual Algorithms
Advantage
Updating

Q-Learning
Val. It.
TD(λ)

etc.

VAPS
Advantage
Learning

VAPS
New algs.

with Policy
Search

VAPS
Q-Learning

Val. It.
etc.

VAPS
Residual

Q-Learning
Val. It.

etc.

Advantage
Learning

Figure 7.1. Contributions of this thesis (all but the dark boxes),
and how each built on one or two previous ones. Everything
ultimately is built on gradient descent.

 7.2 Future Work
Future work could explore when values are preferable to pure policy search (or when
Value and Policy Search together is a better idea). It could further explore whether local
minima are a problem in practice. It might examine the application of gradient descent
techniques to other forms of reinforcement learning, such as TD(λ) and hierarchical
systems. It would be particularly interesting to investigate how policy search as done in
VAPS interacts with POMDPs, where values can be a problem. There are many areas in
reinforcement learning where gradient descent techniques might be useful, and there is
much room for further exploration.

72

References

Baird, L. C. (1995). Residual Algorithms: Reinforcement Learning with Function
Approximation. In Armand Prieditis & Stuart Russell, eds. Machine Learning:
Proceedings of the Twelfth International Conference, 9-12 July, Morgan Kaufmann
Publishers, San Francisco, CA.

Baird, L. C., & Klopf, A. H. (1993). Reinforcement Learning with High-Dimensional,
Continuous Actions. (Technical Report WL-TR-93-1147). Wright-Patterson Air Force
Base Ohio: Wright Laboratory.

Baird, L.C. (1993). Advantage updating. Wright-Patterson Air Force Base, OH. (Wright
Laboratory Technical Report WL-TR-93-1146, available from the Defense Technical
information Center, Cameron Station, Alexandria, VA 22304-6145).

Barto, A., "Connectionist Learning for Control: An Overview," COINS Technical Report
89-89, Department of Computer and Information Science, University of Massachusetts,
Amherst, September, 1989.

Barto, A., and S. Singh, "Reinforcement Learning and Dynamic Programming,"
Proceedings of the Sixth Yale Workshop on Adaptive and Learning Systems, New
Haven, CT, August, 1990.

Barto, A., R. Sutton, and C. Anderson, "Neuronlike Adaptive Elements That Can Solve
Difficult Learning Control Problems," IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC-13, No. 5, September/October 1983.

Barto, A., R. Sutton, and C. Watkins, "Learning and Sequential Decision Making,"
COINS Technical Report 89-95, Department of Computer and Information Science,
University of Massachusetts, Amherst, September, 1989.

Bertsekas, D. P. (1987). Dynamic Programming: Deterministic and Stochastic Models.
Englewood Cliffs, NJ: Prentice-Hall.

Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control. Belmont, MA:
Athena Scientific.

73

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming, Belmont,
MA: Athena Scientific.

Bertsekas, D. P. and Tsitsiklis, J. N. (1997). Gradient Convergence In Gradient Methods
With Errors. MIT Technical Report LIDS-P-2404. (Jan 1999 revision downloadable
from http://www.mit.edu/people/dimitrib/Gradient.pdf).

Boyan, J. A., and A. W. Moore. (1995). Generalization in reinforcement learning: Safely
approximating the value function. In Tesauro, G., Touretzky, D.S., and Leen, T. K. (eds.),
Advances in Neural Information Processing Systems 7. MIT Press, Cambridge MA.

Bradtke, S. J (1993). Reinforcement learning applied to linear quadratic regulation.
Proceedings of the Fifth Conference on Neural Information Processing Systems (pp.
295-302). Morgan Kaufmann.

Gaivoronski, A. A. (1994). Convergence properties of backpropagation for neural
networks via theory of stochastic gradient methods. Part 1. Optimization Methods and
Software. 1994.

Gordon, G. (1996). “Stable fitted reinforcement learning”. In G. Tesauro, M. Mozer, and
M. Hasselmo (eds.), Advances in Neural Information Processing Systems 8, pp. 1052-
1058. MIT Press, Cambridge, MA.

Gordon, G. (1999). Approximate Solutions to Markov Decision Processes. Dissertation,
Carnegie Mellon University.

Gullapalli, V. (1992). Reinforcement Learning and Its Application to Control.
Dissertation and COINS Technical Report 92-10, University of Massachusetts, Amherst,
MA.

Harmon, M. E., Baird, L. C, & Klopf, A.H. (1995). Advantage updating applied to a
differential game. In Tesauro, G., Touretzky, D.S., and Leen, T. K. (eds.), Advances in
Neural Information Processing Systems 7. MIT Press, Cambridge MA.

Hornik, K., and M. White, "Multilayer Feedforward Networks are Universal
Approximators," Neural Networks, Vol. 2, 1989.

Isaacs, Rufus (1965). Differential games. New York: John Wiley and Sons, Inc.

74

Kaelbling, L. P., Littman, M. L. & Cassandra, A., “Planning and Acting in Partially
Observable Stochastic Domains”. Artificial Intelligence, to appear. Available at
http://www.cs.brown.edu/people/lpk.

Mangasarian, O. L. and Solodov, M. V. (1994). "Backpropagation Convergence Via
Deterministic Nonmonotone Perturbed Minimization". Advances in Neural Information
Processing Systems 6, J. D. Cowan, G. Tesauro, and J. Alspector (eds), Morgan
Kaufmann Publisher, San Francisco, CA, 1994.

Marbach, P. (1998). Simulation-Based Optimization of Markov Decision Processes.
Thesis LIDS-TH 2429, Massachusetts Institute of Technology.

McCallum (1995), A. Reinforcement learning with selective perception and hidden state.
Dissertation, Department of Computer Science, University of Rochester, Rochester, NY.

Millington, P. J. (1991). Associative reinforcement learning for optimal control.
Unpublished master's thesis, Massachusetts Institute of Technology, Cambridge, MA.

Narendra, K., & Thathachar, M.A.L. (1989). Learning automata: An introduction.
Prentice Hall, Englewood Cliffs, NJ.

Peshkin, L., Meuleau, N., and Kaelbling, L. (1999). "Learning Policies with External
Memory". Submitted to the International Conference on Machine Learning, 1999.

Rajan, N., Prasad, U. R., and Rao, N. J. (1980). Pursuit-evasion of two aircraft in a
horizontal plane. Journal of Guidance and Control. 3(3), May-June, 261-267.

Rumelhart, D., G. Hinton, and R. Williams, "Learning Internal Representation by Error
Propagation," Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, vol. 1, Rumelhart, D., and J. McClelland, ed., MIT Press, Cambridge, MA,
1986.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by
backpropagating errors. Nature. 323, 9 October, 533-536.

Solodov, M. V. (1995). Nonmonotone and Perturbed Optimization. Dissertation,
University of Wisconsin – Madison.

75

Solodov, M. V. (1996). Convergence Analysis of Perturbed Feasible Descent Methods.
Journal of Optimization Theory and Applications. 93(2) pp. 337-353.

Solodov, M. V. and Zavriev, S. K. (1994). Stability Properties of the Gradient Projection
Method with Applications to the Backpropagation Algorithm Submitted to SIAM
Journal on optimization.

Solodov, M. V. and Zavriev, S. K. (1998). Error Stability Properties of Generalized
Gradient-Type Algorithms. Journal of Optimization Theory and Applications. 98(3) pp.
663-680.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine Learning, 3, 9-44.

Sutton, R., (1990) "Artificial Intelligence by Approximating Dynamic Programming,"
Proceedings of the Sixth Yale Workshop on Adaptive and Learning Systems, New
Haven, CT, August.

Tesauro, G. (1990). Neurogammon: A neural-network backgammon program.
Proceedings of the International Joint Conference on Neural Networks 3 (pp. 33-40). San
Diego, CA.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,
8(3/4), 257-277.

Tresp, V., & R. Hofman (1995). "Missing and noisy data in nonlinear time-series
prediction". In Proceedings of Neural Networks for Signal Processing 5, F. Girosi, J.
Makhoul, E. Manolakos and E. Wilson, eds., IEEE Signal Processing Society, New York,
New York, 1995, pp. 1-10.

Tsitsiklis, J., & B. Van Roy (1997). "An analysis of temporal-difference learning with
function approximation". IEEE Transactions on Automatic Control. 42(5), 674-690.

Watkins, C. (1989), "Learning from Delayed Rewards," Ph.D. thesis, Cambridge
University, Cambridge, England.

Watkins, C. J. C. H., & Dayan, P. (1992). Technical note: Q-learning. Machine Learning,
8(3/4), 279-292.

76

Weaver, S. E. (1999). A Theoretical Framework for Local Adaptive Networks in Static
and Dynamic Systems. Dissertation, University of Cincinnati.

White, H. (1989). Some asymptotic results for learning in single hidden-layer
feedforward network models. Journal of the American Statistical Association 84(408)
pp. 1003-1013.

Williams, R. and L. Baird (1990), "A Mathematical Analysis of Actor-Critic
Architectures for Learning Optimal Controls Through Incremental Dynamic
Programming," Proceedings of the Sixth Yale Workshop on Adaptive and Learning
Systems, New Haven, CT, August, 1990.

Williams, R. J. (1987). "A Class of Gradient-Estimating Algorithms for Reinforcement
Learning in Neural Networks. Proceedings of the IEEE First Annual International
Conference on Neural Networks, June 1987.

Williams, R. J. (1987b). "Reinforcement-Learning Connectionist Systems". Northeastern
University Technical Report NU-CCS-87-3, February.

Williams, R. J. (1988). Toward a theory of reinforcement-learning connectionist
systems. Technical report NU-CCS-88-3, Northeastern University, Boston, MA.

Williams, R. J., and Baird, L. C. (1993). Tight Performance Bounds on Greedy Policies
Based on Imperfect Value Functions. Northeastern University Technical Report NU-
CCS-93-14, November.

