
Discovering an RC4 Anomaly through Visualization 
Dino Schweitzer 

Department of Computer Science 
United States Air Force Academy CO  80840 

dino.schweitzer@usafa.af.mil 

Leemon Baird 
Department of Computer Science 

United States Air Force Academy CO  80840 

leemon.baird@usafa.af.mil 
 

ABSTRACT 
Visualization can be an effective means for analyzing security 
data and teaching students different concepts about various 
security algorithms.  At the Air Force Academy, interactive 
visualizations are used to teach ciphers to students in a 
cryptography course.  In the course of preparing student 
visualizations about the RC4 cipher characteristics, an anomaly 
was discovered in the basic encryption algorithm.  This paper 
describes the anomaly and the process of how it was discovered 
through visualization. 

Categories and Subject Descriptors 
E.3 [Data]: Data Encryption.  

General Terms 
Experimentation, Security. 

Keywords 
Visualization, Cryptography, Algorithm Analysis. 

1. INTRODUCTION 
Visualization is a powerful tool in many applications such as 

scientific study, simulations, data mining and analysis, business, 
and education.  It is not a new concept, but a field with a rich 
history in the use of graphs and visual displays for better 
understandings of data [7].  The advent of increased computing 
power and advances in computer graphic algorithms led to the use 
of visualization for scientific computation [2].  Visualization in 
education has a similar rich background since the 1980’s with 
applications such as algorithm animations, data structures and 
abstract concept representation, and virtual environments [8]. 

 
Visualization in information security has grown with the 

field and is a natural outgrowth of a data-rich envioronment.  For 
example, the massive amounts of data associated with network 
traffic lends itself to a visual approach for data reduction and 
analysis for applications such as intrusion detection and routing 
investigations. 

 
 
 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
VizSEC’06, November 3, 2006, Alexandria, Virginia, USA. 
Copyright 2006 ACM 1-59593-549-5/06/0011...$5.00. 

At the United States Air Force Academy, we are 
investigating the use of interactive visualizations in the education 
of information security.  An interactive graphical tool for teaching 
security protocols have successfully been used to demonstrate 
concepts such as public key exchange [5].  Similarly, in the 
Cryptography class we have developed and used a set of 
interactive visualization applets to demonstrate various historical 
and current cipher algorithms [6].  These visualizations 
demonstrate various attacks and weaknesses of different ciphers 
such as frequency analysis. 

 
In addition to the interactive visualizations, we also create 

static visualizations for the classroom to illustrate different 
security concepts.  For example, when demonstrating the concept 
of S-boxes in the DES encryption scheme, we created a visual 
image showing the mapping of all inputs to outputs as shown in 
Figure 1.  The relative randomness of the 2-D mapping along with 
the frequencies by quadrant demonstrate the random 
characteristics of the S-box mappings. 

 

 
 

Figure 1.  DES S-Box mappings for all inputs and by 
quadrant. 

 
It was in the course of preparing these types of visualizations 

for explaining the RC4 encryption algorithm that led to the 
discovery of an interesting anomaly in the algorithm that was 
previously unknown to the security faculty. 

 

2. RC4 ENCRYPTION ALGORITHM  
RC4 is a stream cipher originally developed in 1987 by Ron 

Rivest of RSA Security [3].  Because of its simplicity and speed, 
it was used extensively for several applications and became the 
basis for the WEP standard used for wireless encryption.  The 
basic concept is that a pseudo-random string of bytes is generated 
which is XOR’d with the plaintext to generate the ciphertext. 

 
To generate the random bytes, a permutation of all possible 

combinations of bytes is stored in a 256 element array known as 



the S array.  Initialization of the S array uses a key of arbitrary 
length to “shuffle” the locations using the simple algorithm 
shown: 

 
 for i from 0 to 255 
  S[i] := i 
 j := 0 
 for i from 0 to 255 
 j := (j + S[i] +  
    key[i mod keylength]) mod 256 
 swap(S[i],S[j]) 
 

The result of this initialization is an array with values 0-255 
in an arbitrary order based on the key.  Once the S array has been 
initialized, an equally simple algorithm is used to generate as 
many pseudo-random bytes as necessary to encode the message. 
 

 i := 0 
 j := 0 
 while GeneratingOutput: 
      i := (i + 1) mod 256 
      j := (j + S[i]) mod 256 
      swap(S[i],S[j]) 
      output S[(S[i] + S[j]) mod 256] 
 

3. VISUALIZING RC4 
As a demonstration of these algorithms and their operation, 

an interactive visualization applet was developed as shown in 
Figure 2 (a description of the tool can be found in [6]).  The user 
can step through the algorithm and watch S-array locations get 
swapped according to the key.  For demonstration purposes, the 
256 element S-array was replaced with a 26 element array. 

 

 
 

Figure 2.  RC4 visualization applet. 

In addition to the interactive visualization, we wanted to 
demonstrate a known weakness of the RC4 algorithm when 
similar keys are used in the generation of the S array.  Two keys 
with the first n-bytes the same will have related outputs for the 
first few bytes, because there will be correlations between the first 
n positions of the S array.  To illustrate this, we generated S-
arrays using random keys with the first 4 or 8 bytes the same.  We 
calculated the average difference of the resulting S-array locations 
and color coded them as shown in Figure 3 (the 256 elements are 
shown in a 16 by 16 grid).  As is visually obvious from the image, 
the first n bytes varied by a much different amount than the 
remaining bytes of the array (first 4 were the same on the left, 
first 8 on the right). 

 

 
 
Figure 3.  Difference in S-arrays with the first bytes of the key 

the same. 
 

In addition to the anticipated visual result, an unexpected 
consequence of this visualization was the pattern appearing in the 
remaining bytes of the S-array.  While a difference was expected 
in the first n bytes, it was expected that the remaining bytes would 
follow a fairly simple monotonic function.  Instead, there was a 
large amount of structure visible.  This visual anomaly led to 
deeper analysis of the algorithm. 
 

To further investigate the randomness of the initialization 
shuffle, a second visualization was created counting the number 
of times each value appeared in each location of the S-array as 
shown in Figure 4.  It should be noted that this analysis is for the 
general application of the algorithm, and not the specific weak 
case illustrated above.  The X axis represents all possible values 
(0-255) and the Y axis is all array locations.  Each point in the 
graph is the average number of times each value occurs in each 
location for 400,000 generations with random keys.  The line 
graph on the right is a cross section clearly showing the 
discontinuity that occurs at X=Y.  Thus, the “random” shuffle 
algorithm used in the RC4 S-array initialization was far from 
random!  Initial search of the cryptography literature did not 
reveal this anomaly as common knowledge. 

 



 
 
Figure 4.  Probability graph of given value at given location in 

S-array. 
 

4. MATHEMATICAL ANALYSIS 
 

The next step was to find an explicit formula for the function 
plotted in Figure 4.  This function is P(x,y), the probability that 
the number starting in position x will end up in position y at the 
end of the initialization.  Let n be the number of positions in the 
array (n=256 for RC4), and number the positions from 0 to n-1.  
Look at the number that starts in position x.  Since the counter i 
always increases, there are only three paths that this number can 
take to eventually move it into position y at the end.  Let m be the 
highest position index that the number ever reaches in its travels.  
Let k be how many times the number moves (including swapping 
with itself).  The three paths the number can follow are: 

 
Case 1: m = y ≥  x The number jumps around zero or 

more times until i=y, at which 
point it moves to y (or stays there 
if it was already there) and never 
moves again. 

Case 2: m > y ≥ x The number moves to increasingly 
higher positions one or more times 
(each time i catches up to it), then 
the last time i reaches it, it moves 
down to y. 

Case 3: m ≥ x > y The same as Case 2, except it 
might never move higher. 

 
Because these cover all possible cases and are mutually 

exclusive, P(x,y) is simply the sum of the three probabilities of 
each of these occurring.  The probabilities for each case are easily 
derived by considering all possible values for m and k and 
summing the probabilities over all paths.  The probabilities for 
each of the three cases correspond to the three terms on the first 
three lines of the following (where a=1/n and b=1-a).  The final 
expression is Mathematica's simplification of the summations. 
 

( )

⎩
⎨
⎧

<
≥

−+=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

+

=

+−−
−−

−

=

−

−

+=

+−

=

−

−−

∑

∑ ∑

x if0
x if

x if
1

1

x if
2

1

,P

1
1

1

1

1

1

2

1

y
yab

abab

yba
k

xn

yba
k

xm

abyx

xyn
xyn

xn

k

knk

n

ym

xm

k

knk

yn

 

This matches the empirical results when the key is 256 
random bytes.  This is a significant result that apparently has 
never been published in a paper, though it appeared in a master's 
thesis [1].  The thesis gave a far more complex, indirect derivation 
(almost 3 pages of dense equations), so the simpler, direct 
derivation here is a useful contribution.  This would never have 
happened without the visualization raising the issue.  This shows 
the power of visualization in cryptography and mathematics. 
 

5. CONCLUSION 
 

RC4 is no longer considered by cryptographers a strong 
encryption algorithm and WEP is not used by people with serious 
concerns about their wireless security.  The particular weakness in 
the initialization algorithm demonstrated is a significant result, 
yet apparently has not been published outside a thesis.  It even has 
applications beyond cryptography, because it will arise any time 
someone tries to shuffle an array using a naive algorithm 
(swapping with a random position) rather than the standard 
algorithm (swapping with a random position that is not lower). 

 
The key finding here is not the anomaly itself, or the 

mathematics behind it, but rather the use of visualization in 
accidental discovery.  The presence of visual patterns in the 
image was obvious to the eye while totally hidden when looking 
at the data.  Further visualization was used to investigate and 
understand the anomaly.  The fact that it was discovered while 
trying to illustrate a separate concept gives credence to the idea of 
visual exploration of data.  It is this ability to take advantage of 
the strong pattern recognition of the human visual system that 
gives visualization its power.  This power will be a huge benefit 
to the study of information security as new techniques are 
developed and experimented with. 

 

6. REFERENCES 
 
[1] Mantin, Itsak, Analysis of the Stream Cipher RC4, Master's 

Thesis, Weizmann Institute of Science, Rehovot, Israel, 
November 2001.  

[2] McCormick, B. H. Visualization in scientific computing. 
SIGBIO Newsl. 10, 1 (Mar. 1988), 15-21. 

[3] R. L. Rivest. The RC4 encryption algorithm. RSA Data 
Security, Inc., Mar. 12, 1992. 



[4] Schneier B., "Section 17.1 RC4,"Applied Cryptography, 
Second Edition, John Wiley & Sons, 1996.  

[5] Schweitzer D., Baird L., Collins M., Brown W., Sherman 
M., GRASP: A visualization tool for teaching security 
protocols, Proceedings of the 10th Colloquium for 
Information Systems Security Education, June 2006. 

[6] Schweitzer D., Baird L., The design and use of interactive 
visualization applets for teaching ciphers, Proceedings of the 
7th IEEE Workshop on Information Assurance, June 2006  

[7] Tufte E., The visual display of quantitative information, 
Graphics Press, Cheshire, CT, 1986. 

[8] Wilson J., Aiken, R., and Katz, I. 1996. Review of animation 
systems for algorithm understanding. In Proceedings of the 
1st Conference on integrating Technology into Computer 
Science Education (Barcelona, Spain, June 02 - 06, 1996). 
ITiCSE '96, pp. 75-77. 

 


