

A GRAPH DRAWING ALGORITHM FOR THE GAME

OF SPROUTS

Wayne Brown and Leemon Baird
Department of Computer Science, The United States Air Force Academy, USAF Academy, CO 80840-6208, USA

Abstract - A graph drawing algorithm for the Game of

Sprouts is presented. The algorithm guarantees that the

polylines that connect graph nodes are drawn smoothly and

that they maintain reasonable distance from other graph

polylines. Vertices of the graph are moved using a

combination of repulsive forces and smoothing forces. The

repulsive forces come from all other visible graph nodes

and visible polyline line segments. The smoothing forces are

calculated from neighboring vertices along a polyline. A

Sprouts player is not allowed to draw new polylines that

cross any existing polyline, and the algorithm prevents edge

crossings as the graph is transformed. The distinctive

features of this algorithm is the use of smoothing forces

instead of traditional spring forces, and the use of line

segments as repulsive elements instead of vertices.

Keywords: Graph drawing, polyline smoothing, Sprouts

1 Introduction

 The Game of Sprouts [1], [2] is played by two

opponents who take turns connecting two free nodes in a

graph with a curved line, called a polyline, that does not

cross any existing line in the graph. A free node is any node

that has less than three lines connected to it. When a player

connects two nodes with a polyline, a new node is created in

the middle of the polyline. A player wins when they connect

two free nodes and their opponent cannot on the succeeding

turn. During the implementation of this game on a Personal

Digital Assistant (PDA), an algorithm is needed to spread

apart the polylines sketched by a user to allow space for later

moves and, at the same time, to keep the polylines smooth

and the graph visually pleasing. This paper presents a

modified "force directed" graph drawing algorithm that

works well for the Game of Sprouts. A traditional "force

directed" algorithm produces geometric distributions of a

graph's polylines, while our algorithm produces a uniform

distribution of the polylines which provides a better visual

graph representation for playing the Game of Sprouts.

2 Previous Work

 Graph drawing algorithms can be categorized based on the

type of drawings they produce (e.g., planar drawings, straight

line drawings, grid drawings, etc.) [3], [4]. This paper's

algorithm is concerned with polyline graph drawings, where

each edge of a graph is represented by a sequence of

connected line segments. Two aesthetics of a "nice" polyline

graph drawing are typically taken to be a minimal number of

edge crossings in conjunction with a minimum number of

bends per polyline. To meet these goals, previous

researchers typically project polyline vertices onto a grid or

curve [5], [6]. These aesthetics do not apply to our work

because edge crossings are disallowed during a Sprouts'

game-play. Therefore, our algorithm must prevent edge-

crossings from happening, but it does not have to remove

existing edge-crossings. In addition, in place of a minimal

number of polyline bends, our algorithm smoothes polylines

without regard for the polylines total length or number of

bends.

 In relationship to other types of graph drawings, the

type most closely related to polyline graph drawings would

be straight-line graph drawings, where each graph edge is

represented by a single straight line segment. Our algorithm

is partially derived from previous work in this area by Eades

[7], Kamada and Kawai [8], Fruchterman and Reingold [9],

and Davidson and Harel [10]. In these works, a graph

drawing is created using an energy function that contains

two opposing forces: "magnetic" forces that repulse vertices

and "spring" forces that attract vertices. Our algorithm uses

only repulsive forces but adds a polyline smoothing

algorithm to maintain smooth polylines between nodes. It

must be noted that our algorithm is solving a much simpler

problem than the previously mentioned work. Their

algorithms attempt to solve the general problem of graph

drawing where the initial state of the graph is random and

the nature of the graph is unknown. Our algorithm attempts

to solve a simpler problem because the construction of our

graph problems are constrained during game-play and we

are not concerned with aesthetic properties such as "total

edge length," "uniform edge length," or symmetry.

3 The Graph Drawing Manipulation

Algorithm

 The Game of Sprouts builds a graph consisting of

nodes connected by polylines. A polyline is a sequence of

points connected by straight line segments. We collectively

call all nodes and points vertices. These terms are shown

graphically in Fig. 1.

Fig. 1. A screen shot of a Sprouts game. In normal game

mode, the polylines would be a single color.

 A graph drawing for a Sprouts game is initially

composed of three or more unconnected nodes and a single,

four-segment polyline that encloses the rectangular game

board area. (The polyline that surrounds the game board is

invisible to the user.) On each turn of the game, one polyline

and one node is added to the graph. As a player sketches out

a new polyline, the game software prevents the new polyline

from crossing any existing polylines in the graph. Our

algorithm manipulates the graph between player turns to

accomplish three objectives: 1) to spread the polylines apart

to make it easier for a user to draw new polylines on later

moves, 2) to smooth the polylines to make the graph less

confusing and more visually pleasing, and 3) to guarantee

the integrity of the graph - that no polylines intersect. The

algorithm attempts to update the graph 30 times per second

and moves each vertex a maximum of one pixel per

iteration. The basic algorithm is:

For each line segment:

Splitting:

If a line segment is longer

than some threshold, split the

line segment into two separate

line segments of equal length

by inserting a new point.

Joining:

If two consecutive line

segments formed by consecutive

points, v1, v2 and v3, have a

length between v1 and v3 that

is below some threshold, and

there are no other vertices of

the graph inside the triangle

formed by v1v2v3, then form a

single line segment between

points v1 and v3 and remove the

two line segments and point v2.

For each vertex in the graph:

To Spread:

Assume that every other visible

node of degree less than two

and every visible line segment

exerts a repulsive force on

this vertex that is

proportional to one over the

distance between them cubed and

calculate a vector that will

move the vertex towards a

location where all the forces

sum to zero.

To Smooth:

1) If the vertex is of degree

two, use a smoothing algorithm

to calculate a new location for

the point or node that would

cause its polyline to become

smoother.

2) If the vertex is a node of

degree greater than two,

calculate a vector that would

move the vertex to an average

of its three connected points.

Move this vertex in the direction

of a weighted sum of the unit

vectors for spreading and

smoothing.

 Solving for the repulsive forces on vertices can be done

using numerical techniques, (e.g., Runga-Kuta) but this is

extremely computationally expensive. Our algorithm uses an

iterative approach that calculates only the direction a vertex

must move to reach equilibrium and not its exact location for

equilibrium.

3.1 Implementation Details

 Scale Factors. All force directed methods for graph

drawing use scale factors to weight the forces appropriately

for a given graph frame. If the graph frame changes size, the

weights typically need adjustments as well. In the following

descriptions all vertices are assumed to be inside a graph

frame with coordinate values in the range 0 to 812, which

guarantees that integer overflow will not occur in our

smoothing calculations.

 The Repulsion Force from a Node. The repulsion

force of a node (node) upon another vertex or node (v) is

calculated by forming a normalized vector between their

locations and then multiplying the vector by 1/d^3, where d

is the distance between the vertices (Eqs. 1-3). Other

node

polyline vertex

point

researchers typically use 1/d^2 [9], but using the distance

cubed produces good results and avoids a square root

calculation.

 dx = v.x – node.x

 dy = v.y – node.y

 length = (dx^2 + dy^2)^0.5 (1)

 forcex = Kn * (dx / length) * 1/length^3

 = Kn * dx / (dx^2 + dy^2)^2 (2)

 forcey = Kn * (dy / length) * 1/length^3

 = Kn * dy / (dx^2 + dy^2)^2 (3)

 A good weight, Kn, for a node repulsion force is 600.

This value was determined through experimentation and

produced our desired outcomes. The weight has no physical

meaning.

 The Repulsion Forces from a Line Segment. The

repulsion force of a line segment defined by two vertices, v2

and v3, upon a vertex, v1, is calculated by summing all the

repulsion vectors for every point along the segment. Let P

represent any point along the line segment, which is defined

in parametric form, as shown in Eq. 4. Therefore, the sum of

all repulsion vectors for every point on the line segment is

calculated with the integral shown in Eq. 5. Here the force is

calculated as 1/d^2 because the solution using 1/d^3 requires

an arctan calculation that we wanted to avoid.

 P = v2 + (v3-v2)*t, 0 <= t <= 1 (4)

 dt
Pv

Pv
f ∫

−
=

1

0

3

1

1 (5)

 a = v1.x – v2.x b = v3.x – v2.x

 c = v1.y – v2.y d = v3.y – v2.y

 g = (a^2+c^2)^0.5

 h = (d^2+b^2-2ab-2cd+a^2+c^2)^0.5

c*bd*a

g

a

h

ab

dt

)dtc()bta(

dtc
f

c*bd*a

g

c

h

dc

dt

)dtc()bta(

bta
f

1

0

3
22

y

1

0

3
22

x

−

−

+−

=

−+−

−
=

−

−

−
−

=

−+−

−
=

∫

∫
 (6)

 Equation 6 is a closed form solution to Eq. 5. Since the

integral is over dt, the magnitude of the force vector

calculated by Eq. 6 is ignored, but the direction of the force

vector provides the direction of the combined repulsive

forces from the line segment. To calculate the location of

this combined force, a ray is formed that starts at v1 and has

the opposite direction of the force vector. The intersection of

this ray with the line segment provides a location from

which the repulsive forces of the line segment are

concentrated. The repulsive force of a line segment is then

calculated from this point using Eq. 2-3. In addition, the

repulsion vector is weighted by the length of the line

segment.

 The orientation of the repulsion force vector with

respect to the vertex is also taken into account when

calculating the magnitude of the repulsion force. Eqs. 7-10

show these modifications to the force vector's magnitude.

sin1 = angle between line segment and

forceVector

(7)

sin2 = angle between direction of polyline and

forceVector

(8)

(for a node) Repulsion = Kv *

LengthLineSegment * forceVector * sin1

(9)

(for a point) Repulsion = Kv *

LengthLineSegment * forceVector *

max(sin1,sin2)

(10)

 A good weight, Kv, for a line segment repulsion force

could not be found that worked well for all line segments.

This was due to the fact that the polyline segments that

surround the graph frame are always much longer than the

line segments of the graph polylines. Therefore, Kv is 1 for

the frame polyline segments and 5 for the graph polyline

segments. These values were determined through

experimentation and produced our desired outcomes. The

weights have no physical meaning. Fig 5 shows a graphical

representation of the forces acting on a single vertex.

Fig. 5. A visual example of the repulsion

forces applied to move a vertex.

 Polyline smoothing. The algorithm for smoothing a

polyline is described in [11].

 Combining the Spreading and Smoothing Forces.

The spreading and smoothing algorithms each provide a

vertex being repulsed

vector that indicates which direction a vertex should move to

produce an improved graph drawing. Each vector is

normalized and a weighted sum of the normalized vectors is

used to create a movement vector for a vertex. If the length

of either the spreading or smoothing vectors becomes less

than a minimum distance, that respective motion vector is

ignored. Our experiments found that a 60% spreading force

and a 40% smoothing force worked well in most cases.

Keeping the spreading forces above 50% prevents polyline

crossings. Experimentation also showed that it is desirable to

dynamically change the percentage contribution of the forces

over time. Initially the spreading forces should be high to

separate a graph's polylines, and then smoothing should

become the dominate force to improve the visual qualities of

the graph. We used a minimum length of one pixel to

determine when a force vector should be ignored.

 a. b. c.

 d. e. f.

 g. h. i.

Fig. 6. The left column contains initial graph configurations.

The middle column shows our algorithm's modifications.

The right column shows a traditional, force-directed

algorithm's modifications.

4 Implementation and Results

 Our algorithm has a run-time complexity of O(n^3),

where n is the number of graph vertices. If a graph

representation stores topology information, then the number

of line segments that must be tested for visibility can be

reduced with an associated reduction in the algorithm's run-

time complexity. Our algorithm was implemented in Java

and tested on an Intel Pentium, 1.86GHz, Gateway laptop

computer. For small graphs with approximately 10 vertices,

the algorithm could update the graph 30 times per second;

for 100 vertices, updates dropped to 10 times per second;

and for 300 vertices updates dropped to 1 time per second.

The test bed code has not been optimized and a more robust

and faster version of the code seems feasible.

 A comparison of our algorithm to a traditional, force-

directed algorithm is not a straightforward task since most

force-directed algorithms have been designed for straight-

line graph drawings, not polyline graph drawings. However,

a comparison to traditional force-directed algorithms can be

made by treating every vertex in our graph as a distinct

graph node. Fig. 6 presents some comparisons and

demonstrates how our algorithm maintains the integrity of

graph polylines and produces good spreading and smoothing

of the polylines. (The force-directed algorithm used for the

comparisons in Fig. 6 was implemented from equations in

[4], page 307-309, and used a constant of 1.0 for the

repulsive forces and a constant of 30.0 for the attractive

forces. The constants were chosen to make the best possible

comparison graphs - in the eyes of the authors.)

5 Conclusions

 Our algorithm spreads and smoothes polyline graph

drawings in beneficial ways not found in any other published

algorithms. It enhances the game play of a computerized

implementation of Sprouts and potentially has application to

other types of graph drawing problems.

6 References

[1] http://en.wikipedia.org/wiki/Sprouts_game

[2] http://www.geocities.com/chessdp, "World Game of

Sprouts Association"

[3] Nishizeki, T., Rahman, M. S., Planar Graph

Drawing, World Scientific Publishing Co, ISBN 981-256-

033-5.

[4] Battista, G., Eades, P., Tamassia, R., Tollis, I. G.,

Graph Drawing: Algorithms for the Visualization of

Graphs, Prentice-Hall, Inc., 1998, ISBN 0-13-301615-3.

[5] Bonichon, N., Le Sa¨ec, B., Mosbah, M., Optimal area

algorithm for planar polyline drawings, in 28th

International Workshop, Graph - Theoretic Concepts in

Computer Science (WG), volume 2573 of LNCS, pages 35–

46. Springer, 2002.

[6] Giacomo E., Didimo, W., Liotta, G., Wismath, S.,

Curve-constrained drawings of planar graphs,

Computational Geometry: Theory and Applications, v.30

n.1, p.1-23, January 2005.

[7] Eades, P., A heuristic for graph drawing, Congressus

Nutnerantiunt, 42, 149–160 (1984).

[8] Kamada, T., Kawai, S., An algorithm for drawing

general undirected graphs, Information Processing Letters,

31, (l), 7–15 (1989).

[9] Fruchterman, T. M. and Reingold, E. M., Graph

drawing by force-directed placement, Softw. Pract. Exper.

21, 11 (Nov. 1991), 1129-1164. DOI=

http://dx.doi.org/10.1002/ spe.4380211102.

[10] Davidson, R. and Harel, D., Drawing graphs nicely

using simulated annealing, ACM Trans. Graph. 15, 4 (Oct.

1996), 301-331. DOI=

http://doi.acm.org/10.1145/234535.234538.

[11] Brown, W., Baird, L., A Non-Trigonometric, Area

Preserving, Polyline Smoothing Algorithm, "Consortium for

Computing Sciences in Colleges Mid-South Conference

2008", Arkansas Tech University, Russellville, Arkansas, 4

April - 5 April, 2008.

