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Abstract - A graph drawing algorithm for the Game of 

Sprouts is presented. The algorithm guarantees that the 

polylines that connect graph nodes are drawn smoothly and 

that they maintain reasonable distance from other graph 

polylines. Vertices of the graph are moved using a 

combination of repulsive forces and smoothing forces. The 

repulsive forces come from all other visible graph nodes 

and visible polyline line segments. The smoothing forces are 

calculated from neighboring vertices along a polyline. A 

Sprouts player is not allowed to draw new polylines that 

cross any existing polyline, and the algorithm prevents edge 

crossings as the graph is transformed. The distinctive 

features of this algorithm is the use of smoothing forces 

instead of traditional spring forces, and the use of line 

segments as repulsive elements instead of vertices. 
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1 Introduction 

  The Game of Sprouts [1], [2] is played by two 

opponents who take turns connecting two free nodes in a 

graph with a curved line, called a polyline, that does not 

cross any existing line in the graph. A free node is any node 

that has less than three lines connected to it. When a player 

connects two nodes with a polyline, a new node is created in 

the middle of the polyline. A player wins when they connect 

two free nodes and their opponent cannot on the succeeding 

turn. During the implementation of this game on a Personal 

Digital Assistant (PDA), an algorithm is needed to spread 

apart the polylines sketched by a user to allow space for later 

moves and, at the same time, to keep the polylines smooth 

and the graph visually pleasing. This paper presents a 

modified "force directed" graph drawing algorithm that 

works well for the Game of Sprouts. A traditional "force 

directed" algorithm produces geometric distributions of a 

graph's polylines, while our algorithm produces a uniform 

distribution of the polylines which provides a better visual 

graph representation for playing the Game of Sprouts.  

 

2 Previous Work 

 Graph drawing algorithms can be categorized based on the 

type of drawings they produce (e.g., planar drawings, straight 

line drawings, grid drawings, etc.) [3], [4]. This paper's 

algorithm is concerned with polyline graph drawings, where 

each edge of a graph is represented by a sequence of 

connected line segments. Two aesthetics of a "nice" polyline 

graph drawing are typically taken to be a minimal number of 

edge crossings in conjunction with a minimum number of 

bends per polyline. To meet these goals, previous 

researchers typically project polyline vertices onto a grid or 

curve [5], [6]. These aesthetics do not apply to our work 

because edge crossings are disallowed during a Sprouts' 

game-play. Therefore, our algorithm must prevent edge-

crossings from happening, but it does not have to remove 

existing edge-crossings. In addition, in place of a minimal 

number of polyline bends, our algorithm smoothes polylines 

without regard for the polylines total length or number of 

bends. 

 In relationship to other types of graph drawings, the 

type most closely related to polyline graph drawings would 

be straight-line graph drawings, where each graph edge is 

represented by a single straight line segment. Our algorithm 

is partially derived from previous work in this area by Eades 

[7], Kamada and Kawai [8], Fruchterman and Reingold [9], 

and Davidson and Harel [10]. In these works, a graph 

drawing is created using an energy function that contains 

two opposing forces: "magnetic" forces that repulse vertices 

and "spring" forces that attract vertices. Our algorithm uses 

only repulsive forces but adds a polyline smoothing 

algorithm to maintain smooth polylines between nodes. It 

must be noted that our algorithm is solving a much simpler 

problem than the previously mentioned work. Their 

algorithms attempt to solve the general problem of graph 

drawing where the initial state of the graph is random and 

the nature of the graph is unknown. Our algorithm attempts 

to solve a simpler problem because the construction of our 

graph problems are constrained during game-play and we 

are not concerned with aesthetic properties such as "total 

edge length," "uniform edge length," or symmetry. 

 



 

3 The Graph Drawing Manipulation 

Algorithm 

 The Game of Sprouts builds a graph consisting of 

nodes connected by polylines. A polyline is a sequence of 

points connected by straight line segments. We collectively 

call all nodes and points vertices. These terms are shown 

graphically in Fig. 1. 

 

 
Fig. 1. A screen shot of a Sprouts game. In normal game 

mode, the polylines would be a single color. 

 

 A graph drawing for a Sprouts game is initially 

composed of three or more unconnected nodes and a single, 

four-segment polyline that encloses the rectangular game 

board area. (The polyline that surrounds the game board is 

invisible to the user.) On each turn of the game, one polyline 

and one node is added to the graph. As a player sketches out 

a new polyline, the game software prevents the new polyline 

from crossing any existing polylines in the graph. Our 

algorithm manipulates the graph between player turns to 

accomplish three objectives: 1) to spread the polylines apart 

to make it easier for a user to draw new polylines on later 

moves, 2) to smooth the polylines to make the graph less 

confusing and more visually pleasing, and 3) to guarantee 

the integrity of the graph - that no polylines intersect. The 

algorithm attempts to update the graph 30 times per second 

and moves each vertex a maximum of one pixel per 

iteration. The basic algorithm is: 

For each line segment: 

Splitting: 

If a line segment is longer 

than some threshold, split the 

line segment into two separate 

line segments of equal length 

by inserting a new point. 

Joining: 

If two consecutive line 

segments formed by consecutive 

points, v1, v2 and v3, have a 

length between v1 and v3 that 

is below some threshold, and 

there are no other vertices of 

the graph inside the triangle 

formed by v1v2v3, then form a 

single line segment between 

points v1 and v3 and remove the 

two line segments and point v2. 

For each vertex in the graph: 

To Spread: 

Assume that every other visible 

node of degree less than two 

and every visible line segment 

exerts a repulsive force on 

this vertex that is 

proportional to one over the 

distance between them cubed and 

calculate a vector that will 

move the vertex towards a 

location where all the forces 

sum to zero. 

To Smooth: 

1) If the vertex is of degree 

two, use a smoothing algorithm 

to calculate a new location for 

the point or node that would 

cause its polyline to become 

smoother. 

2) If the vertex is a node of 

degree greater than two, 

calculate a vector that would 

move the vertex to an average 

of its three connected points. 

Move this vertex in the direction 

of a weighted sum of the unit 

vectors for spreading and 

smoothing. 

 

 Solving for the repulsive forces on vertices can be done 

using numerical techniques, (e.g., Runga-Kuta) but this is 

extremely computationally expensive. Our algorithm uses an 

iterative approach that calculates only the direction a vertex 

must move to reach equilibrium and not its exact location for 

equilibrium. 

3.1 Implementation Details 

 Scale Factors. All force directed methods for graph 

drawing use scale factors to weight the forces appropriately 

for a given graph frame. If the graph frame changes size, the 

weights typically need adjustments as well. In the following 

descriptions all vertices are assumed to be inside a graph 

frame with coordinate values in the range 0 to 812, which 

guarantees that integer overflow will not occur in our 

smoothing calculations. 

 The Repulsion Force from a Node. The repulsion 

force of a node (node) upon another vertex or node (v) is 

calculated by forming a normalized vector between their 

locations and then multiplying the vector by 1/d^3, where d 

is the distance between the vertices (Eqs. 1-3). Other 

node 

polyline vertex 

point 



 

researchers typically use 1/d^2 [9], but using the distance 

cubed produces good results and avoids a square root 

calculation. 

 dx = v.x – node.x 

 dy = v.y – node.y 

 length = (dx^2 + dy^2)^0.5 (1) 

 

 forcex  = Kn * (dx / length) * 1/length^3 

  = Kn * dx / (dx^2 + dy^2)^2 (2) 

 forcey  = Kn * (dy / length) * 1/length^3 

  = Kn * dy / (dx^2 + dy^2)^2 (3) 

 

 A good weight, Kn, for a node repulsion force is 600. 

This value was determined through experimentation and 

produced our desired outcomes. The weight has no physical 

meaning. 

 The Repulsion Forces from a Line Segment. The 

repulsion force of a line segment defined by two vertices, v2 

and v3, upon a vertex, v1, is calculated by summing all the 

repulsion vectors for every point along the segment. Let P 

represent any point along the line segment, which is defined 

in parametric form, as shown in Eq. 4. Therefore, the sum of 

all repulsion vectors for every point on the line segment is 

calculated with the integral shown in Eq. 5. Here the force is 

calculated as 1/d^2 because the solution using 1/d^3 requires 

an arctan calculation that we wanted to avoid. 

 P = v2 + (v3-v2)*t,     0 <= t <= 1 (4) 
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 Equation 6 is a closed form solution to Eq. 5. Since the 

integral is over dt, the magnitude of the force vector 

calculated by Eq. 6 is ignored, but the direction of the force 

vector provides the direction of the combined repulsive 

forces from the line segment. To calculate the location of 

this combined force, a ray is formed that starts at v1 and has 

the opposite direction of the force vector. The intersection of 

this ray with the line segment provides a location from 

which the repulsive forces of the line segment are 

concentrated. The repulsive force of a line segment is then 

calculated from this point using Eq. 2-3. In addition, the 

repulsion vector is weighted by the length of the line 

segment. 

 The orientation of the repulsion force vector with 

respect to the vertex is also taken into account when 

calculating the magnitude of the repulsion force. Eqs. 7-10 

show these modifications to the force vector's magnitude. 

sin1 = angle between line segment  and 

forceVector  

(7) 

sin2 = angle between direction of polyline and 

forceVector 

(8) 

(for a node) Repulsion = Kv * 

LengthLineSegment * forceVector * sin1 

(9) 

(for a point) Repulsion = Kv * 

LengthLineSegment * forceVector * 

max(sin1,sin2) 

(10) 

    

 A good weight, Kv, for a line segment repulsion force 

could not be found that worked well for all line segments. 

This was due to the fact that the polyline segments that 

surround the graph frame are always much longer than the 

line segments of the graph polylines. Therefore, Kv is 1 for 

the frame polyline segments and 5 for the graph polyline 

segments. These values were determined through 

experimentation and produced our desired outcomes. The 

weights have no physical meaning. Fig 5 shows a graphical 

representation of the forces acting on a single vertex. 

 
Fig. 5. A visual example of the repulsion 

forces applied to move a vertex. 

 

 Polyline smoothing. The algorithm for smoothing a 

polyline is described in [11]. 

 Combining the Spreading and Smoothing Forces. 

The spreading and smoothing algorithms each provide a 

vertex being repulsed 



 

vector that indicates which direction a vertex should move to 

produce an improved graph drawing. Each vector is 

normalized and a weighted sum of the normalized vectors is 

used to create a movement vector for a vertex. If the length 

of either the spreading or smoothing vectors becomes less 

than a minimum distance, that respective motion vector is 

ignored. Our experiments found that a 60% spreading force 

and a 40% smoothing force worked well in most cases. 

Keeping the spreading forces above 50% prevents polyline 

crossings. Experimentation also showed that it is desirable to 

dynamically change the percentage contribution of the forces 

over time. Initially the spreading forces should be high to 

separate a graph's polylines, and then smoothing should 

become the dominate force to improve the visual qualities of 

the graph. We used a minimum length of one pixel to 

determine when a force vector should be ignored. 

 

   
 a. b. c. 

   
 d. e. f. 

   
 g. h. i. 

Fig. 6. The left column contains initial graph configurations. 

The middle column shows our algorithm's modifications. 

The right column shows a traditional, force-directed 

algorithm's modifications. 

 

4 Implementation and Results 

 Our algorithm has a run-time complexity of O(n^3), 

where n is the number of graph vertices. If a graph 

representation stores topology information, then the number 

of line segments that must be tested for visibility can be 

reduced with an associated reduction in the algorithm's run-

time complexity. Our algorithm was implemented in Java 

and tested on an Intel Pentium, 1.86GHz, Gateway laptop 

computer. For small graphs with approximately 10 vertices, 

the algorithm could update the graph 30 times per second; 

for 100 vertices, updates dropped to 10 times per second; 

and for 300 vertices updates dropped to 1 time per second. 

The test bed code has not been optimized and a more robust 

and faster version of the code seems feasible. 

 A comparison of our algorithm to a traditional, force-

directed algorithm is not a straightforward task since most 

force-directed algorithms have been designed for straight-

line graph drawings, not polyline graph drawings. However, 

a comparison to traditional force-directed algorithms can be 

made by treating every vertex in our graph as a distinct 

graph node. Fig. 6 presents some comparisons and 

demonstrates how our algorithm maintains the integrity of 

graph polylines and produces good spreading and smoothing 

of the polylines. (The force-directed algorithm used for the 

comparisons in Fig. 6 was implemented from equations in 

[4], page 307-309, and used a constant of 1.0 for the 

repulsive forces and a constant of 30.0 for the attractive 

forces. The constants were chosen to make the best possible 

comparison graphs - in the eyes of the authors.) 

5 Conclusions 

 Our algorithm spreads and smoothes polyline graph 

drawings in beneficial ways not found in any other published 

algorithms. It enhances the game play of a computerized 

implementation of Sprouts and potentially has application to 

other types of graph drawing problems. 
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