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ABSTRACT 

 
We show how to fold a business card into an icosahedron, using an origami 
construction (folding only, no cutting or rulers) with higher efficiency (40.8%) 
than any single-sheet folding we are aware of.  Due to the aspect ratio of a 
standard business card, the resulting faces are just slightly non-equilateral, with 
an obtuse-to-acute angle ratio of 1.0085. This deviation is not detectable to an 
observer, but in the interest of completeness we also give a slightly more 
complex construction that results in a perfect icosahedron with a very slight 
reduction in efficiency. 
 
 

I.  The Basic Construction 
 
The standard American business card is 3.5”x 2”, giving an aspect ratio of 7:4.  
Our construction works with any foldable rectangle with this aspect ratio, so for 
your first attempt you may wish to work with a large piece of cardboard of the 
correct shape. 
 
Given an aspect ratio of 7:4, we may begin by folding the rectangle into sevenths 
in the following way.  Unless explicitly indicated otherwise, all folds in the 
construction below are mountain folds.  
 
First fold the lower left hand corner up to make a square, without creasing the 
diagonal.  Mountain fold the right edge of the square: 
 

Insert Figure 1 about here 
 

                                                           
1 Please address all correspondence to this author, barry@faginfamily.net. 
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Fold the resulting square in half, then fold each half in half again: 
 

Insert Figure 2 about here 
 

Fold three more sections of the same width in the remaining section on the right, 
to give you a rectangle divided in sevenths: 
 

Insert Figure 3 about here 
 

Fold a diagonal crease from the upper left corner to the lower right: 
 

Insert Figure 4 about here 
 

Add creases through the points indicated below: 
 

Insert Figure 5 about here 
 
 

Add two more creases through the points indicated below: 
 

Insert Figure 6 about here 
 

Add the four new creases below: 
 

Insert Figure 7 about here 
 
 

Complete the folding process with the final 4 creases indicated here: 
 

Insert Figure 8 about here 
 

This completes all the mountain folds.  Next, mark your folded paper as shown: 
 

Insert Figure 9 about here 
 
The dotted lines are the sites of valley folds to be performed in the steps to 
follow. With sufficient practice, these marks will not be necessary.  Note that 
none of the lines or symbols will show up on the finished icosahedron.  Only the 
shaded faces in the figure above will be visible in the final result. 
 
Make the valley folds A,B,C,D shown below.  The order does not matter. 
 

Insert Figure 10 about here 
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Fold the squares together on valley fold pair E: 
 

Insert Figure 11 about here 
 
The final folds marked F below build the complete icosahedron.  The squares 
near point E on the upper right form a slot for the circle near point X on the 
upper left, as do the squares near point E on the bottom left for the circle near 
point Y on the lower right.  The mountain folds for the small corner triangles at 
the upper right and lower left lock the circles in.  If you have performed this step 
correctly, the final combination of folds will bring the points X and Y to X’ and 
Y’.  Everything folds symmetrically. 
 

Insert Figure 12 about here 
 

 
II.  Deviations from Optimality 

 
The construction above gives faces that deviate slightly from pure equilateral 
triangles.  Consider our original construction: 
 

Insert Figure 13 about here 
 

 
Because all the non-diagonal folds are vertical, the angles labeled θ must be 
congruent to one another, as must the angles θ’.  Because they divide the 
rectangle into portions of equal width, we must have 90- θ ≡ 90- θ’, which 
implies θ ≡ θ’.  The remaining angle α is congruent to 180-2θ. 
 
By the symmetry of the construction, the diagonal lines are parallel as well.  
Applying the geometry and the relationship between θ and α repeatedly, we see 
that all the non-right triangles are isosceles, constructed as follows: 
 

Insert Figure 14 about here 
 
 
Consider one of these triangles below: 

 
Insert Figure 15 about here 

 
 
Assume the original rectangle has total width B and height A.  Then the triangle 
above will have height H = A/(7/2), and width W = B/7.  From above, θ = tan-1 

(2W/H) = tan-1( (2B/7) / (A/(7/2)) ) = tan-1(B/A)    For our construction, B/A = 
7/4, so θ = tan-1(7/4) ≈ 60.255o, close to but not equilateral. 
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III. An Exact Construction 
 
Although the deviation from purely equilateral faces in the previous construction 
above is too small for an observer to detect, the resulting folds nonetheless do not 
produce a perfect icosahedron.  In this section we provide a fully correct 
construction from a business card, at the cost of slightly increased complexity. 
 
For equilateral faces, we require θ = tan-1(B/A) = 60o, which implies B/A = √3.  
This is slightly smaller than our original value of 7/4.   
 
The hypotenuse of a right triangle with sides of length A and √3A is of length 
2A, so we may obtain a rectangle with the desired aspect ratio using two other 
identical rectangles in the following way: 
 

Insert Figure 16 about here 
 

The resulting rectangle has an aspect ratio of √3A / A = √3, as required.  For a 
business card, this results in the removal of 3½ - 2√3 ≈ .036” inches off the 
length of the card. 
 
Strict origami rules of paper folding do not allow cutting, in which case we 
simply mountain fold.  This makes the triangles on the right edge slightly thicker, 
but does not affect the equilateral symmetry of the faces. 
 
Once we have a rectangle of the required aspect ratio, we then require a way to 
fold it into sevenths.  Our previous construction relied on an aspect ratio of 7:4, 
which is no longer the case.  Instead, we may employ the method of “crossing 
diagonals”, adapted from Lang [1], to find a point 1/7 along the long edge.  The 
rectangle may then be accordion folded 3 times, with the remaining square 
divided into fourths as before. 
 
 

IV.  Efficiency 
 
For a card of width B and height A with triangles of width W = B/7 and height H 
= 2A/7, the area of each face in the first construction is WH/2 = AB/49.  There 
are twenty faces in both constructions, and the area of the entire paper is AB.  
Thus the efficiency of the first construction is (20AB/49) / AB  ≈ 40.816%.   
 
For the second construction, assuming no cutting, the area of each face is WH/2 
= AB’/49, and the area of the entire paper is AB, with B’/A = √3 and B/A = 7/4.  
Thus the efficiency is (20AB’/49AB) = 20B’/49B.  B’/B = (4√3)/7, so the 
efficiency is reduced by  (4√3)/7 below the previous construction, to ≈ 40.398%. 
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There are numerous examples of other icosahedral foldings, but almost all are 
modular, using multiple sheets of paper.  Kasahara, for example [2], gives a 
construction from 20 separate sheets for both a stellate and a regular icosahedron.  
In [3], he gives a different construction for a tri-colored design using 30 modules.  
These are just the more well-known examples.  A Google search on “modular 
origami polyhedra” produces several thousand hits. 
 
Single-sheet foldings of polyhedra, and icosahedra in particular, appear to be 
considerably rarer.  We have discovered only two, both with lower efficiencies 
than the one we have presented.  Montroll [4], gives an origami icosahedral 
folding from a single square.  Haga, in [5] also gives a single square folding.  
Neither provide efficiency calculations, so we provide our analyses here. 
 
Below is the crease pattern for Montroll’s construction: 
 

Insert Figure 17 about here 
 
Measuring from top to bottom along the diagonal, we have 
 
 S+ 6H + S = L√2 
 
Since the triangles are equilateral, substituting H = √3S/2 and simplifying gives 
 
 S = L√2 / (3√3 + 2) 
 
The area of one face is SH/2 = √3S2/4, so the area of the folded icosahderon is 
5√3S2.  Applying the formula above and simplifying, we have 
 
 A = (10√3/(3√3 + 2)2) L2, giving an efficiency of about 33.4%. 
 
The crease pattern for Haga’s construction is below: 
 

Insert Figure 18 about here 
 
From the relationship between the base and height of an equilateral triangle, and 
applying the Pythagorean theorem to the indicated right triangle, we have 
 
 2H = 2√3S/2  = L/2√2  S = L/ 2√6 
 
As before, the area of the folded icosahedron is 5√3S2 = 5√3 (1/24) L2, giving an 
efficiency of 5√3/24 ≈ 36.1%. 
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V.  A Final Puzzle 
 
We invite the reader to fold an icosahedron from this 7:4 rectangle, to see if the 
ink blots below form a recognizable pattern.  It would certainly make an 
interesting business card! 
 

Insert Figure 19 about here 
 

NOTE:  In some cultures, it is considered insulting to fold or damage someone 
else’s business card.  When in doubt, use your personal cards only! 
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FIGURES (color reproduction not required) 
 

 
Figure 1 

 

 
Figure 2 

 

 
Figure 3 
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Figure 4 

 

 
Figure 5  
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Figure 7 
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  Figure 9 
 

 
Figure 10 
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Figure 11 

 

 
Figure 12 
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Figure 13 

 

 
Figure 14 
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Figure 15 
 

 
Figure 16 
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Figure 17:  Montroll’s construction 

 

 
Figure 18:  Haga’s construction 
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Figure 19 

 


