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Conserved quantities indicate fundamental physical properties of
systems, and are therefore eagerly sought after in science. Con-
servation of energy and conservation of angular momentum, for
example, are two fundamental principles that offer profound in-
sights into the nature of the world we live in.

Cellular automata, as models of physical systems, can exhibit
conserved functions of relevance to the system under study. Num-
ber conservation is a simple example, but far more sophisticated
ones can be discovered with appropriate algorithmic techniques.
Cellular automata with identical conserved functions are, in some
sense, closely related to one another. Thus conserved functions
can be used to classify cellular automata, and to identify connec-
tions between seemingly unrelated systems.

? email: Leemon@Leemon.com
† email: barry.fagin@usafa.edu

1



There are known algorithms to find all conserved energy func-
tions of a given order for a given cellular automaton. They are
exponentially slow, but can be made faster by eliminating the
trivial conserved functions that classify all states as having the
same energy. So we must find the basis set for the trivials. That
problem is nontrivial.

We present here the first proofs for the basis set for all trivial
conserved functions in the general case, and use this to derive a
number of optimizations for reducing time and memory for the
discovery of nontrivials.

We use these results to show the Game of Life has no nontrivials
with any rectangular energy window containing 13 or fewer cells.
Other 2D automata, however, do have nontrivials. We give the
complete list of those functions for all life-like automata (i.e. 2D,
2-color, 3 × 3 neighborhood, outer totalistic) with rectangular
energy windows with 9 or fewer cells, and discuss patterns we
have observed.

1 PRELIMINARIES: BASIC DEFINITIONS

We consider a problem described in [6]. We consider cellular automata with
k states in n dimensions. The neighborhood of a cellular automaton is the
region of surrounding cells used to determine the next state of a given cell.
The window of an energy function for a cellular automaton is the region of
adjacent cells that contribute to the function. Both neighborhoods and win-
dows are n-dimensional tensors, with the size of each dimension specified as
a positive integer. Given the size of such a tensor, it is useful to define the
following 3 sets of tensors:

Definition 1.1. Cellular automata are composed of cells, each of which is
in one of k states (or colors) at any given time. The set C is the set of such
colors, and the set C∗ is that set augmented with another color named *. The
color * denotes a special color that is not used by the cellular automaton, but
which simplifies our proofs. It is explained in more detail in the pages that
follow.

C = {0, 1, 2, . . . , k − 1} (1.1)

C∗ = C ∪ {∗} (1.2)

It is sometimes useful to choose one color to be treated specially. In all such
cases, the color 0 will be chosen.
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Definition 1.2. An n-dimensional cellular automaton rule is a function R

that gives the color of a given cell on the next time step as a function of
a neighborhood of cells centered on that cell on the current time step. For
symmetric neighborhoods, the neighborhood is an n-dimensional tensor of
size w1 × · · · × wn, where each wi is an odd, positive integer.

R : Cw1×···×wn → C (1.3)

For a non-symmetric neighborhood, we can consider a larger, symmetric
neighborhood that contains it, with an R that ignores the extra cells. There-
fore, without loss of generality, we will assume the neighborhood is symmet-
ric.

Definition 1.3. An n-dimensional cellular automaton is an n-dimensional
tensor whose elements are in C, and which is updated on each time step ac-
cording to a cellular automaton rule R, applied to every cell in parallel. The
rule is a function applied to each cell and its neighbors, where neighbors wrap
toroidally (i.e. the top edge is considered adjacent to the bottom, the left edge
is adjacent to the right, and so on for each dimension).

Definition 1.4. A life-like cellular automaton is one that is 2-dimensional, has
2 colors, has a 3 × 3 neighborhood, and is outer totalistic, meaning that the
color of a cell on the next step is a function only of its color on the current step
and the total number of its 8 neighbors that are of each color on the current
step. The name derives from Conway’s Game of Life, which is an example
of this type of CA.

A cellular automaton as a whole works by applying R to every cell in
parallel, with toroidal wrapping, giving a resulting universe the same size
as the original. But it is also useful to consider the result of applying R

to some smaller region, without wrapping, giving a result that is an even
smaller region (smaller because the new values for cells on the edges can’t be
calculated). So we define the function T , which applies R to tensors that are
a subset of the universe:

Definition 1.5. The regional successor function, Rreg, advances a region
within a cellular automaton one time step by applying a rule R to all the
windows within a region M of size s1 × · · · × sn

Rreg : (Cw1×···×wn → C)× Cs1×···×sn → C(s1−w1+1)×···×(sn−wn+1)
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which is defined as:

Rreg(R,M) = M ′ where M ′i1,...,in
= R(M{i1,...,i1+w1−1},...,{in,...,in+wn−1})

(1.4)

The subscripts for M ′ range over all values for which the subscripts for M

on the right side will be legal (i.e. not larger than its size).
Note that the ellipses on the right side of the equation are used in two dif-

ferent ways. Each element of the result comes from applying the R successor
function to only that portion of the M tensor where the elements have a first
coordinate in the range {i1, . . . , i1 + w1− 1}, and a second coordinate in the
range {i2, . . . , i2 + w2 − 1}, and so on up to an nth coordinate in the range
{in, . . . , in + wn − 1}.

There are various ways in which energy functions for cellular automata
might be defined. We will use the following, common definition:

Definition 1.6. An energy function is a function f : Cs1×···×sn → R that
assigns a real number to a window of size s1 × · · · × sn within a cellular
automaton given its contents.

Definition 1.7. The order ( or size) of an energy function with n-dimensional
window of size s1 × s2 × s3 × · · · × sn is defined to be the product of the
sizes s1s2s3 . . . sn.

Definition 1.8. The total energy E : Cu1×···×un → R of a given state U of
an entire cellular automaton universe with u1 × · · · × un cells, with respect
to a given energy function f , is

E(U) =
∑
W

f(UW ) (1.5)

where U is the universe state for a cellular automaton, W is the position of
the energy window within that universe, and UW is that window within the
universe, which wraps toroidally at the edges of the universe.

Definition 1.9. A conserved energy function (or a conserved function) for a
given cellular automaton rule is an energy function that for a universe of any
size, and for any given state of that universe, will assign the same total energy
to that universe for both that state and its successor.

Definition 1.10. A trivial conserved energy function (or a trivial) is an energy
function that for a universe of any size, will assign the same total energy to
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that universe regardless of its state. A nontrivial conserved energy function
(or a nontrivial) for a given cellular automaton rule is a conserved energy
function that is not trivial.

Definition 1.11. Given n positive integers s1, . . . , sn defining the size of an
n-dimensional tensor, the set B(s1, . . . , sn) is the set of all tensors over C of
that size. This set is partitioned into two sets, Z(s1, . . . , sn), the zero-sided
tensors, which have at least one side that contains the origin element and
is filled entirely with zero elements, and Z̄(s1, . . . , sn), the non-zero-sided
tensors, which do not have such a side. The origin element is the element of
the tensor at location (1, 1, . . . , 1). The B0(s1, . . . , sn) is defined to be the
subset of B where all the elements of the tensor after the middle one (in row
major order) are 0.

B(s1, . . . , sn) = Cs1×···×sn (1.6)

Z(s1, . . . , sn) = {M ∈ B(s1, . . . , sn) | ∃i∀j∀sj Ms1,...,si−1,1,si+1,...,sn = 0}
(1.7)

Z̄(s1, . . . , sn) = B(s1, . . . , sn) \ Z(s1, . . . , sn) (1.8)

So in 1 dimension, the zero-sided vectors are those with a 0 as the first
element. In 2 dimensions, the zero-sided matrices are those with a top row
of all zeros, or a leftmost column of all zeros, or both. In n dimensions, the
zero-sided tensors are those for which all the elements on side i are zero, for
some i, where the side is an n-dimensional slice including the origin.

It is useful to define a matching function H that can be used in the con-
struction of various functions over these tensors. The function returns 1 iff
two tensors have elements that match, where the * symbol is treated as match-
ing any color.

Definition 1.12. Given n-dimensional tensors over C∗, the function
H : Cs1×···×sn

∗ × Cs1×···×sn
∗ → {0, 1} is defined as

H(A, B) =


1 if ∀i∀si As1,...,sn = Bs1,...,sn

∨As1,...,sn
= ∗

∨Bs1,...,sn = ∗
0 otherwise

(1.9)

Given an n-dimensional tensor, it is useful to unwrap it into a 1D string of
characters. This will be done in row major order. For matrices, this means
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the elements will be read from left to right across the top row, then left to
right across the second row, and so on down to the bottom row. Tensors
of other dimensionalities are unwrapped similarly, with the last dimension
changing most quickly, and the first dimension changing most slowly. It is
useful to have a function Vnum(T ) that unwraps the elements of tensor T ,
then converts the resulting string to an integer by treating it as a number in
base k, with the first element being the most significant digit, and the last
being the least significant.

Definition 1.13. An n-dimensional tensor M with elements in C can be con-
verted to an integer by the function Vnum : Cs1×···×sn → N, which treats the
elements of the tensor as digits base k, where the elements are taken in row
major order, treating the first as the least significant digit, and the last as the
most significant.

Vnum(M) =
s1∑

i1=1

s2∑
i2=1

· · ·
sn∑

in=1

Mi1,i2,...,in

n∏
j=1

k(ij−1)
Qn

m=j+1 sm (1.10)

For this definition, the rightmost product is understood to be 1 for all cases
where the lower bound exceeds the upper.

Definition 1.14. An n-dimensional tensor with elements in C can be con-
verted to a binary vector by the function Vt : Cs1×···×sn → {0, 1}(ks1s2...sn ),
which is defined as

Vt(M) = v where vi =

{
1 if i = Vnum(M) + 1

0 otherwise
(1.11)

The vector Vt(M) has one element for each possible color pattern for a tensor
of the same size as M . That vector will be all zeros, except for a 1 in the
position corresponding to the pattern M .

Definition 1.15. A function f : Cs1×···×sn → R can be converted to a real
vector with ks1s2...sn elements by the function V : (Cs1×···×sn → R) →
Rks1s2...sn , which is defined as

V (f) =
∑

M∈B(s1,...,sn)

f(M) · Vt(M) (1.12)

This vector is a convenient way to represent an energy function. It completely
specifies the energy function, by listing the output of the function for every
possible input. We will define various classes of energy functions by simul-
taneous linear equations, treating the elements of this vector as the variables.
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Note that the energy function window is independent of the CA neighbor-
hood. Energy functions can be defined over regions different from the scope
of the transition rule of the CA. Our work with 1D CAs in [2], for example,
has identified conserved energy functions with windows with sizes as small
as 1×1 and as large as 1×14, for CAs that have neighborhoods of size 1×3.

Definition 1.16. Given tensor M of size m1 × · · · ×mn, which is a region
within an n-dimensional universe, and given an energy window size of s =
(s1, . . . , sn), a vector representing the total energy of all energy windows that
fit within M can be found with the function

e : Nn × Cm1×···×mn → Nks1s2...sn

which is defined as

e(s, M) =
m1−s1+1∑

i1=1

m2−s2+1∑
i2=1

· · ·
mn−sn+1∑

in=1

V (M{i1,...,i1+s1−1},...,{in,...,in+sn−1})

(1.13)

The e(s, M) function slides the energy window to all possible positions
that fit entirely within the tensor M , and finds the energy at each position. It
then sums all the energies coming from identical patterns, and constructs a
vector with the total energy derived from each possible pattern. The sum of
the elements of this vector would simply be the total energy of M . But it is
useful to maintain the vector of separate values when generating sets of linear
equations that define the trivials, the nontrivials, or the conserved functions.

Definition 1.17. For a positive integer n, the function N : Nn → N is defined
as

N(s1, . . . , sn) =
2n−1∑
b=1

k
Q

i (si−bi)(−1)1+
P

i bi (1.14)

where bi is the ith bit of integer b written in binary, with bit 1 being least
significant and bit n being most.

In 1 and 2 dimensions this reduces to:

N(c) = kc−1 (1.15)

N(r, c) = k(r−1)c + kr(c−1) − k(r−1)(c−1) (1.16)

It will be proved below that this gives the cardinality of many of the sets
that will be considered here. It equals the number of zero-sided tensors of a
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given size, the number of trivials, and the number of unit complements. And
when subtracted from a simple power of 2, it yields the number of non-zero-
sided tensors, the number of equations defining the conserved functions, and
the number of equations defining the nontrivials. These terms are defined and
the counts proved below.

Definition 1.18. In n dimensions, the seven transforms that operate on ten-
sors of size s1 × · · · × sn are:

PC :Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.17)

P∗ : {1, 2, . . . , n}×Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.18)

Prot : {1, 2, . . . , n}×Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.19)

PLD : {1, 2, . . . , n}×Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.20)

PRD : {1, 2, . . . , n}×Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.21)

PL :Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.22)

PR :Cs1×···×sn
∗ → Cs1×···×sn

∗ (1.23)

and are defined to be:

PC(M) = M ′ where M ′i1,...,in
=

{
0 if ∀j ij = dsj/2e
Mi1,...,in

otherwise
(1.24)

P∗(d, M) = M ′ where M ′i1,...,in
=

{
∗ if id = 1

Mi1,...,in
otherwise

(1.25)

Prot(d, M) = M ′ where M ′i1,...,in
= Mi1,...,id−1, 1+(id mod sd) ,id+1,...,in

(1.26)

PLD(d, M) =

{
P∗(d, M) if ∀j∀ij Mi1,...,id−1,1,id+1,...,in ∈ {0, ∗}
M otherwise

(1.27)

PRD(d, M) =

{
Prot(d, P∗(d, M)) if ∀j∀ij Mi1,...,id−1,1,id+1,...,in

∈ {0, ∗}
M otherwise

(1.28)

PL(M) = PLD(1, PLD(2, . . . PLD(n, M) . . . )) (1.29)

PR(M) = PRD(1, PRD(2, . . . PRD(n, M) . . . )) (1.30)
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The function Prot(d, M) rotates the elements of tensor M along dimen-
sion d, so that one side that included the origin moves to the opposite side.
The function PC sets the central element to zero. The function PL trans-
forms a zero-sided tensor by replacing the 0 elements on each all-zero, origin-
containing side with * elements. And PR does the same, then rotates it so
each modified side moves to the opposite side. The functions P∗, PLD, and
PRD are only used here to define the other functions, and won’t be used again.

The following gives three examples of PL and PR applied to zero-sided
matrices of size 3× 5. In each example, M is a zero-sided matrix, where the
all-zero side is on the left, top, and both, respectively:

M =
0 1 1 1 1
0 0 1 0 1
0 0 1 0 0

PL(M) =
* 1 1 1 1
* 0 1 0 1
* 0 1 0 0

PR(M) =
1 1 1 1 *
0 1 0 1 *
0 1 0 0 *

(1.31)

M =
0 0 0 0 0
1 0 1 1 1
0 0 0 0 1

PL(M) =
* * * * *
1 0 1 1 1
0 0 0 0 1

PR(M) =
1 0 1 1 1
0 0 0 0 1
* * * * *

(1.32)

M =
0 0 0 0 0
0 1 0 0 0
0 1 0 1 0

PL(M) =
* * * * *
* 1 0 0 0
* 1 0 1 0

PR(M) =
1 0 0 0 *
1 0 1 0 *
* * * * *

(1.33)

Definition 1.19. The function PZ : Cs1×···×sn → C(2s1−1)×···×(2sn−1)

takes a small n-dimensional tensor and pads it with zero elements on many
of its sides to create a large n-dimensional tensor. In each dimension, if the
small tensor was of size si in that dimension, then the large tensor will be of
size 2si−1 in that dimension. The zero elements are added in such a way that
the last nonzero element in the original tensor becomes the center element in
the new tensor.

For example,

PZ

(
1 0 1 1 0
0 1 0 0 0
0 0 0 0 0

)
=

0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(1.34)

In this 2D example, the small matrix M is of size 3 × 5, and PZ(M) is
of size (2 · 3 − 1) × (2 · 5 − 1) = 5 × 9. Note that this M happens to have
4 nonzero elements, arranged in a sort of V shape. If the elements of M

are read in row major order (i.e. left to right across the top row, then left to
right on the second row, etc.), then the last nonzero element to be read is the
bottom of the V. The PZ function pads with zeros in such a way as to put that
last nonzero element in the exact center of a large matrix of the correct size,
padded with enough zeros on each side to accomplish that.
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Definition 1.20. For a given tensor size s1 × · · · × sn, the set T is defined
to be the set of all trivial conserved energy functions with energy windows of
that size.

That defined T to be a set of functions. But it is often more convenient to
convert each of those functions to a vector, by building a vector of the coeffi-
cients of the H terms in the definition of fM . This is what the V function in
Definition 1.15 does. The definition of fM above has only two H terms, but
these are for M tensors that can have the * symbol as elements. The * sym-
bol can be eliminated by expanding each such H term into multiple terms, for
each possible combination of colors assigned to the * symbols. This is what
the V function does, and so it can give vectors with more than 2 nonzero el-
ements. The set T is a space of functions, and Tc is the space of coefficient
vectors corresponding to each of those functions.

Definition 1.21. For a given tensor size s1× · · ·× sn, the set Tc is defined to
be the following set of real vectors:

Tc(s1, . . . , sn) = {V (f) | f ∈ T } (1.35)

2 THEORETICAL RESULTS

The following theorems derive a basis set for the trivials, then show how that
can speed the search for nontrivials by allowing the energy for certain patterns
to be set to zero without loss of generality. It is interesting that the concept of
the set of zero sided tensors arises several times and plays a crucial role in the
theory of the trivials.

Theorem 2.1. The cardinality of the set Z(s1, . . . , sn) is N(s1, . . . , sn).

Proof: Definition 1.17 defines N as a sum over integers b. This proof will
group those integers by Hamming weight, then apply the inclusion-exclusion
principle. Let Gw be the set of all integers in {0, . . . , 2n − 1} that have a
Hamming weight of w (i.e. have exactly w bits equal to 1 when written in
binary). Then the sum from Definition 1.17 can be broken into sets of terms
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with equal Hamming weight:

N(s1, . . . , sn) =
2n−1∑
b=1

k
Q

i (si−bi)(−1)1+
P

i bi (2.1)

=
n∑

w=1

∑
b∈Gw

k
Q

i (si−bi)(−1)1+
P

i bi (2.2)

=
n∑

w=1

(−1)w+1
∑

b∈Gw

k
Q

i (si−bi) (2.3)

For a given b, the exponent on the k represents the number of unconstrained
elements remaining in the tensor after certain sides have been constrained to
be entirely zero. The 1 bits in b select which sides are constrained to be all
zero. So if the 1st, 3rd, and 7th bits of b equal 1, then the size of the tensor
is decremented in the 1st, 3rd, and 7th dimensions, which reflects that the
origin-containing sides in the 1st, 3rd, and 7th dimensions have all elements
constrained to equal zero.

The expression of k raised to the number of unconstrained elements gives
a count of how many tensors over C exist, subject to the constraint that certain
sides must have all elements equal to 0 (where the sides are chosen by the 1
bits in b).

So the entire double sum is a sum of counts of tensors that have been filled
with bits in various ways. Some tensors are included more than once in that
sum, because one side might be constrained to be all zeros, or that side might
be unconstrained, but have every element chosen to be zero, which yields the
same tensor. So there is a need to subtract off those that are counted multiple
times.

The power of -1 means that some tensors are added to the total, while some
are subtracted from the total. SinceZ(s1, . . . , sd) is the set of all tensors with
at least one side set to zero, it must be shown that tensors with no all-zero sides
are not included in the count. And it must be shown that each tensor with at
least one all-zero side is counted exactly once (i.e. will be positively counted
exactly one more time than it is negatively counted). These two cases will
now be shown.

The first case is obvious. If a tensor has no all-zero sides, then it would
only be counted by a term of b = 0, which has a Hamming weight of w = 0.
But the sum is for w > 0, so such tensors are never counted.

For the second case, consider a tensor M with exactly z of its origin-
containing sides having all zero elements. The double sum will count that
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tensor several times for each value of w. When w = z, it is counted exactly
once, with a b that has w of its bits set to 1, corresponding to the origin-
containing, all-zero sides of M . When w = z−1, it is counted w times, where
b has only z−1 bits set to 1, corresponding to z−1 of the z all-zero sides, and
with the remaining bits filled in to match M . When w = z − 2, it is counted(

z
2

)
times, and in general, for each w ≤ z it is counted

(
z

z−w

)
=
(

z
w

)
times,

once for each way of setting w of the bits of b to 1, corresponding to w of the z

all-zero, origin-containing sides of M . Each of these counts has a coefficient
that is a power of -1, so the total contribution of M to the count is

z∑
w=1

(−1)w+1
(z
w
)

(2.4)

=− (−1)0+1
(z
0
)

+
z∑

w=0

(−1)w+1
(z
w
)

(2.5)

=1 +
z∑

w=0

(−1)w+1
(z
w
)

(2.6)

=1 + 0 (2.7)

=1 (2.8)

So, we see that every M that has at least one all-zero, origin-containing side
will contribute a value of exactly 1 to the original sum, and every M that
lacks such a side will contribute nothing. Therefore the sum will give ex-
actly the count of how many tensors have the desired property, and therefore
N(s1, . . . , sn) does give the size of the set Z(s1, . . . , sn).

Corollary 2.2. The cardinality of the set Z̄(s1, . . . , sn) is ks1s2...sn−N(s1, . . . , sn).

Proof: There are ks1s2...sn tensors over C of the given size, of which N(s1, . . . , sn)
are zero-sided tensors (by Theorem 2.1), so there must be ks1s2...sn−N(s1, . . . , sn)
non-zero-sided tensors.

Lemma 2.3. The set T ⊥c (s1, ...sn) is spanned by the set {e(s, M)−e(s, PC(M)) |
M ∈ B(2s1 − 1, . . . , 2sn − 1)}

Proof: A trivial is defined to be an energy function such that given any size
for a universe, all universe states of that size will be assigned the same energy.
Equivalently, if all the possible states are listed in some order, each state must
have the same energy as the next on the list. If the states are listed in Gray
code order, then each will differ from the next in only a single cell. Since total
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energy is unchanged by rotation of the entire universe, we can rotate the state
in each equation so that the cell that changes is in the center of the universe.
If there are more than two colors, then the energy with the central cell set to
each nonzero color can be equated to the energy with that central cell set to
zero. Thus, for any given size s, the trivials can be defined as those functions
that satisfy

E(s, M) = E(s, PC(M)) (2.9)

or
E(s, M)− E(s, PC(M)) = 0 (2.10)

for each possible choice of universe state M . Recall that E(s, M) is the
total energy of the universe, found by summing the energy function over all
possible windows of size s, and PC sets the central cell in the universe to zero.
Each E is defined as a sum of the energies for all possible positions of the
window. But for any window position that does not include the central cell,
the corresponding terms in the two E functions will cancel. Therefore, rather
than considering all universes of all sizes, it is only necessary to consider
small tensors M that are just large enough to contain all the windows that
contain the cell that is zeroed, without any toroidal wrapping at the edges.
The equations will be satisfied for all such tensors if and only if they are
satisfied for all possible universe states of any size. Given that the energy
window is of size s = (s1, . . . , sn), we need only consider the matrices over
C of size (2s1 − 1)× (2s2 − 1)× · · · × (2sn − 1).

There are only finitely many possible patterns of cells that fit within the en-
ergy function for a given window size. So the value that the function assigns
to each input pattern can be considered a variable, and the set of equations
can be viewed as a set of linear equations in those variables.

For example, consider a 1D universe with 2 colors and a window size of
2. In general, an energy function f for this case can be written as

f(M) =


v1, if M = 00

v2, if M = 01

v3, if M = 10

v4, if M = 11

(2.11)

Equivalently, it can be written in terms of the matching function H

f(M) = v1H(M, 00) + v2H(M, 01) + v3H(M, 10) + v4H(M, 11)
(2.12)
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It is also useful to convert f from a function to a corresponding coefficient
vector using the V function defined earlier

V (f) = (v1, v2, v3, v4) (2.13)

The energy functions correspond to the linear vector space of all such co-
efficient vectors. The conserved functions correspond to a subspace of that,
and the trivials correspond to a subspace of that. The subspace corresponding
to the trivials can be found by solving the set of linear equations described
above. For this example, those equations are:

E(s, ... 010...)− E(s, ... 000...) = 0 (2.14)

E(s, ... 011...)− E(s, ... 001...) = 0 (2.15)

E(s, ... 110...)− E(s, ... 100...) = 0 (2.16)

E(s, ... 111...)− E(s, ... 101...) = 0 (2.17)

In each equation, the ellipses represent cells that have no effect on the
result, since the state passed to the first E differs from the second only in the
central cell. Since the energy window is of size 2, the region that has an effect
is of size 2 ·2−1 = 3. Given the definition of f , this set of four simultaneous
equations can be rewritten as

(v2 + v3)− (v1 + v1) = 0 (2.18)

(v2 + v4)− (v1 + v2) = 0 (2.19)

(v4 + v3)− (v3 + v1) = 0 (2.20)

(v4 + v4)− (v3 + v2) = 0 (2.21)

Each of the original E terms becomes only two terms here, because a
window of size 2 can only be in two different positions in the universe and
still overlap the central cell. The full definition of E would add more terms
within each set of parentheses, but all of those additional terms will cancel
in the subtraction because they represent windows that are not overlapping
with the only cell that is different. Within each set of parentheses, the first
v represents an energy window looking at the first and second of the 3 cells,
and the second v represents an energy window looking at the second and
third cell. These four simultaneous equations can be combined into a single
equation in the obvious way:
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−2 1 1 0
−1 0 0 1
−1 0 0 1
0 −1 −1 2

 v1
v2
v3
v4

 =

 0
0
0
0

 (2.22)

At this point, there are two different sets of coefficients involved. Each
row of the matrix represents the coefficients of one of the linear equations
defining the trivials. And the vector (v1, v2, v3, v4) represents the coefficients
of the H terms in the definition of f . We refer to the rows of the matrix as
the vectors for equations defining the trivials, and the vector (v1, v2, v3, v4)
as the coefficient vector for the energy function. The solution to the set of
equations is the space of coefficient vectors for the trivials, which is Tc, so
the rows of the matrix span the space T ⊥c , the orthogonal complement of that
space, because the coefficient vector of each trivial is a solution to the set of
linear equations, and is therefore orthogonal to every row of the matrix.

In the above construction, the rows of the matrix come from coefficients
of all the H terms. The e function in Definition 1.16 creates vectors from
such coefficients. So in general, the linear equations defining the trivials have
coefficient vectors of

{e(s, M)− e(s, PC(M)) |M ∈ B(2s1 − 1, . . . , 2sn − 1)} (2.23)

This set may have linearly dependent elements, so it may not form a basis
set. But by construction, it spans exactly the space T ⊥c , because the space
Tc of the coefficient vectors of the trivials is exactly the solution to the set of
equations.

Lemma 2.4. The set T ⊥c (s1, ...sn) is spanned by the set {e(s, M)−e(s, PC(M)) |
M ∈ B0(2s1 − 1, . . . , 2sn − 1)}

Proof: This lemma is identical to the previous one, except instead of M being
an arbitrary tensor of the given size, it is restricted to having half its elements
being zero. Specifically, every element after the center one (in row major or-
der) must be zero. We will show that when M is restricted to such a case, the
resulting set of equations is still restrictive enough that all its solutions will
be trivials, and so it continues to span the same space as before.

We first show the result in 1D, where the energy window is of size s1, and
M is of size 2s1 − 1. This is illustrated here for s1 = 4.

M = ***1000 (2.24)
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U = ********1000******** (2.25)

Assume that f is an energy function that satisfies all the equations gener-
ated by tensors in the form of the M shown, where each * is an arbitrary color,
the 1 is an arbitrary nonzero color, and each 0 is the 0 color. If f satisfies all
these equations, then by the definitions of the equations, whenever M can be
superimposed on a larger universe at a position such that each 0 in M corre-
sponds to a cell in that universe that is also 0, then the cell in that universe
corresponding to the 1 in M can be changed to an arbitrary color without
changing the total energy of the universe. In this illustration, this means that
the cell in U marked as 1 could be changed to 0 without affecting the total
energy of the universe. If that change is made, then in the new universe, M

can slide one more step to the left and still match. Therefore the cell in U to
the left of the 1 can also be set to 0. Continuing, every cell in the universe can
eventually be set to 0 without changing the total energy. So by induction, we
can conclude that any universe containing an island of s1 adjacent 0 cells is
guaranteed to have the same total energy as the all-zeros universe.

Now consider a universe U1,1 with an arbitrary state, and 3 other universes
that are identical except that one or two islands of s1 contiguous cells have
been set to zero, where the islands are far enough apart that no single energy
window can touch two islands simultaneously.

U0,0 = *********000*********000******** (2.26)

U0,1 = *********000******************** (2.27)

U1,0 = *********************000******** (2.28)

U1,1 = ******************************** (2.29)

The first 3 universes each contain at least one island, and so must all have
the same total energy as the all-zeros universe. By the definition of total
energy, it must be true that (E(U0,0)−E(U0,1))−(E(U1,0)−E(U1,1)) = 0,
because all the terms cancel out. Therefore U1,1 must have the same energy as
the all-zeros universe. Since U1,1 is completely arbitrary, all universes must
have the same energy, so f is trivial. Therefore this subset of equations is still
large enough to guarantee that its solution space is still the trivials.

This 1D island argument generalizes to higher dimensions by applying it
once in each dimension. For example, in 2 dimensions, M is a matrix of size
2s1−1 by 2s2−1 with all zeros after the center element (in row major order),
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and a universe with a 2D island looks like U .

M =

* * * * * * *
* * * * * * *
* * * * * * *
* * * 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

(2.30)

U =

* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * 1 0 0 0 * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *

(2.31)

Now U has an island of zeros consisting of a ribbon of s1 all-zero rows,
topped by a bump of s2 zeros. If M is superimposed on U such that the cells
marked 1 correspond, then every 0 in M corresponds to a 0 in U . Therefore,
for any f satisfying the equations, that 1 can be set to 0 in U without changing
the total energy of U . Then the cell to the left can be zeroed, and so on, until
the entire row is set to zero. Applying the 1D island argument horizontally
to that row, we can conclude that for any universe that contains a ribbon of
s1 all-zero rows, the row above can be set to all zeros without affecting the
total energy. Repeating that to the row above, and so on, the entire universe
can be zeroed out. So applying the 1D island argument vertically to rows, we
can conclude that every universe has the same energy as the all-zero universe.
Thus f is trivial. So the restricted set of equations is again sufficient.

The same argument in 3D would have a 3D M with zeros in its second
half (in row major order). The starting U would have a 3D island of zeros.
Such an island consists of s1 layers of all zeros, topped by a 2D island of
zeros. The 2D island of zeros is a matrix with s2 rows of zeros, topped by a
1D island of zeros. The 1D island of zeros is a row of s3 zeros. The proof
in 3D is the same as before, starting in the last dimension and working back.
The argument generalizes to n dimensions in the same way. Therefore there
is no loss of generality if M is restricted to be a large tensor with zeros for the
second half of its elements. The restricted equations will span the same space
as the original ones in the previous lemma, and so this lemma is proved.

Lemma 2.5. The set T ⊥c (s1, ...sn) is spanned by the set {e(s, M)−e(s, PC(M)) |
M = PZ(A), A ∈ Z̄(s1, . . . , sn)}

Proof: This lemma is identical to the previous one, but restricting M to an
even smaller subset of the possible tensors. In the preceding lemma, M could
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be any large tensor that is half zeros. In this case, M can only be those tensors
that come from taking a smaller, non-zero-sided tensor, and using PZ to pad
it with zeros. Such padding always leaves the second half entirely zero, so
the set of M tensors in this lemma is a subset of that in the last lemma.

We will show that the same space is spanned, even if M is restricted to
only those tensors where all the nonzero elements fit within a single energy
window. To do this, we will show that for any M that contains two nonzero
elements that are too far apart, the corresponding equation is not linearly
independent of the other equations, and so can be removed.

Consider the case where M is such a matrix. Of the two nonzero elements
that are far apart, arbitrarily choose one and call it the ”first element”, and
call the other the ”second element”. Let M0,1 be M with the first element set
to 0, let M1,0 be M with the second element set to zero, let M0,0 be M with
both set to zero, and let M1,1 be M with neither element changed (i.e., M1,1

is another name for M ). The set of linear equations that defines the trivial
conserved functions will therefore include these 4 equations:

E(s, M0,0)− E(s, PC(M0,0)) = 0 (2.32)

E(s, M0,1)− E(s, PC(M0,1)) = 0 (2.33)

E(s, M1,0)− E(s, PC(M1,0)) = 0 (2.34)

E(s, M1,1)− E(s, PC(M1,1)) = 0 (2.35)

An energy function satisfying these equations should also satisfy any lin-
ear combination of them, so it must satisfy the sum of the middle two minus
the other two, which gives this equation:

E(s, M0,1)− E(s, PC(M0,1)) + E(s, M1,0)− E(s, PC(M1,0))

− E(s, M0,0) + E(s, PC(M0,0))− E(s, M1,1) + E(s, PC(M1,1)) = 0
(2.36)

We assumed there is a large enough distance between the two nonzero el-
ements being considered, that no single energy window can contain both of
them at once. Those terms in the sum E(s, M0,0) that include the first element
will therefore cancel out with those terms in the negative sum −E(s, M0,1)
that contain the first element. This is because those two sums differ only in
the terms that include the second element, none of which include the first el-
ement. Similarly, the terms in E(s, M0,0) that contain the second element
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cancel with those in −E(s, M1,0) that contain the second element. Note that
there are 8 summations in the above equation, and they can all be paired up
similarly so that all terms including the first element cancel, as do all contain-
ing the second element. In addition, if there is a window that contains neither
the first nor second element, then the term for that window will occur in all
8 summations, being positive in 4 and negative in 4, and so will cancel out.
Therefore, all terms in all the summations cancel, and the equation reduces to
the equation 0 = 0.

Given a set of linear equations, if some subset of the equations sums to
the 0 = 0 equation, that means that they are linearly dependent, and so any
one of them can be removed from the set without loss of generality. We will
choose to remove the equation involving M1,1. This can be repeated for each
M matrix that contains any two nonzero elements that are too far apart to fit
in a single energy window. If the M tensors with highest number of nonzero
elements are deleted first, then this procedure will always be possible, be-
cause when it is time to delete the tensor M1,1, the 3 tensors M0,1, M1,0, and
M0,0 will all have fewer nonzero elements, and so cannot have been deleted
yet. Therefore, without loss of generality, we can remove all of the equations
based on M tensors with nonzero elements that are too far apart to cover with
a single energy window.

At this point, the set of tensors being considered consists of those M ten-
sors that have all 0 elements in their second half, and have all of their nonzero
elements clustered together in a region that fits within a single energy win-
dow. For example, in 2D, if the energy window is 3 × 5 then the entire M

matrix will be 5 × 9. One example of an M that would generate one of the
equations that remains in the final set is:

M =
0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(2.37)

This is a legal M because there is a nonzero element in the center, all the
elements are 0 in the second half, and all of the nonzero elements fit within
a single energy window. That last fact is shown by shading a 3 × 5 region
that is the size of the energy window, and includes all the nonzero elements.
There are actually several positions that the shaded window could have been
drawn. For uniqueness, we will always choose to draw that window so that
there is a nonzero element in the top row and in the leftmost column of the
window. In other words, the window will be chosen so that its contents are
not a zero-sided tensor. If the contents of that window are called A, then
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M = PZ(A), and A ∈ Z̄(s1, . . . , sn). Any A in that set will generate a legal
M corresponding to an equation that is kept. Therefore the set given in the
lemma is sufficient to span the desired space, and the lemma is proved.

Theorem 2.6. One basis set for the coefficient vectors of the equations defin-
ing the trivial conserved functions with energy windows of size s = (s1, . . . , sn)
is {e(s, M)− e(s, PC(M)) |M = PZ(A), A ∈ Z̄(s1, . . . , sn)}.

Proof: This theorem is equivalent to the last lemma, except that the set
must not only span the desired space, but it must also be minimal, with no
linearly dependent vectors.

If a matrix is upper triangular with no zeros on the diagonal, then its rows
will be linearly independent. One way to prove that the rows of an arbitrary
matrix are linearly independent is to reorder the columns and then reorder the
rows to put it in that form. More generally, to show that all the vectors in a set
are linearly independent, it is sufficient to give a name to each position in the
vector, and give a name to each vector, where there is a total order on names,
and the vector named A has a nonzero element in the position named A, and
it has zero elements in all the positions with names less than A. This will now
be done with the coefficient vectors for the equations defining the trivials.

Each equation is generated from a tensor M . It was shown in the last
lemma that it is sufficient for each M to be generated from a non-zero-sided
tensor A by the equation M = PZ(A). Therefore it is natural to use A as the
name of the coefficient vector for its corresponding equation. The terms in the
equation refer to energy functions defined over energy windows the same size
and shape as A. Therefore it is natural to use A as the name of the position in
the vector corresponding to the energy function applied to a window whose
contents are A. It remains only to find some total order over the tensors that
has the desired property.

Consider the following ordering over the tensors A ∈ Z̄(s1, . . . , sn).
In this ordering, the tensors are sorted by the number of nonzero elements.
Those tensors with more nonzero elements come before those with fewer. In
the case of a tie, the tensors are ordered lexicographically, with color 0 com-
ing after all other colors, with all the elements unrolled into a single list in
row major order. So in 2D, if two matrices have the same number of nonzero
elements, then their order is determined by their upper-left element. If that
element is a tie, then their order is determined by the element to the right of
it. If that is a tie, comparison continues across the top row, then left-to-right
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across the second row, and so on down to the bottom row. It will now be
shown that this ordering has the desired property.

Consider the M shown in equation (2.37), and the A which is shown
shaded. This M will generate an equation with a term for each possible posi-
tion of the energy window, both with and without setting the center cell to 0.
In the ordering just described, the window position that is shown as shaded
will come before any other possible position, and before any version with the
central element set to 0. It must come before any position where the window
is moved some distance to the right, or down, or both, because that will re-
duce the number of nonzero elements in the window, because we assumed A

is a non-zero-sided matrix, and therefore has nonzero elements on the top row
and leftmost column, which will leave the window if it moves right or down.
The shaded window shown will also come before positions where it is moved
up or left or both, because these moves will increase the number of leading
zeros in the row-major-order unrolling of the contents of the window, and
so those shifted windows will come later than the shaded window. And the
shaded window must come before the shaded window in the same position
when M is modified to set its central cell to 0, because such a modification
will decrease the number of nonzero element in the shaded window.

Therefore, for any equation generated by an M = PZ(A), there will be a
term referring to A, and all other terms will refer to tensors that come later
in the ordering. So the coefficient vector named A has a nonzero number in
position A and zeros in all positions less than A. Thus this ordering has the
desired properties, and so the equations are linearly independent.

So it has been shown that the proposed set of equations are sufficient to de-
fine the trivials, and are a minimal set, because they are linearly independent.
Thus they form a basis set, and the theorem is proved.

Lemma 2.5 gave a small set of equations defining the trivial conserved
functions. Each trivial is conserved for all possible cellular automata. It is
natural to seek the equivalent for the conserved functions for any particular
CA. Such a set is given by the following theorem.

Theorem 2.7. The set of coefficient vectors for one set of linear equations
that defines the conserved functions with energy windows of size s = (s1, . . . , sn)
for cellular automaton rule R with neighborhood of size w = (w1, . . . , wn) is

{e(s, M)−e(s, PC(M)− e(s, Rreg(R,M)) + e(s, Rreg(R,PC(M)))

|M = PZ(A), A ∈ Z̄(s1 + w1 − 1, . . . , sn + wn − 1)}

Proof: In this set, M ranges over only those big tensors that can be gen-
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erated by padding certain smaller tensors with zeros. If M were to instead
range over all big tensors, then this set of equations would become the same
as the unoptimized, common definition of the equations defining the con-
served functions, which has been given in practically every paper that has
been published on conserved functions for CAs. It states that the “conserved
functions” can be defined by imagining an arbitrarily-large universe with an
arbitrary state, and one cell defined to be the “origin”, which has a nonzero
color. If the CA is run for one step, the total energy of the universe must
remain unchanged. If the origin is instead set to zero and the universe is
run for one step, then again the energy must remain unchanged. These four
energies (the universe before and after that step, with the origin set to 0 or
not), must therefore satisfy the equation (E(M)−E(successor(R,M)))−
(E(PC(M)) − E(successor(R,PC(M)))) = 0, for all universe states M .
Because of canceling terms, it is sufficient to draw M from the set of ten-
sors of a size related to the sum of the CA neighborhood and energy window
sizes, rather than drawing from the infinite set of all universes of all sizes.
That yields a statement identical to the theorem, except for the mentioned
restriction.

This theorem restricts M to a subset of the tensors analogous to that used
in Lemma 2.5 for the trivials. In fact, the proof here goes through in an
identical way to the proofs in Lemmas 2.4 and 2.5. Where proof by induction
works for the trivial lemmas, it also works for this conserved theorem. Where
terms in sums cancel for the trivial lemmas, they also cancel for the conserved
theorem. Where equations are shown to be linearly dependent and are deleted
in the trivial lemmas, the same can be done for the conserved theorem. So the
proof for this theorem will not be shown in detail here, since it is essentially
the same.

Now that a basis set for T ⊥ has been shown, it is possible to give a basis
set for the trivials, T . The following definition defines such a set, and is
followed by a theorem proving that it actually is such a basis.

Definition 2.8. For a given tensor size s1 × · · · × sn, the set Tb is defined
to be the following set of functions, and Tbc is the set of coefficient vectors
corresponding to those functions.

Tb(s1, . . . , sn) = {fM |M ∈ Z(s1 × · · · × sn)} (2.38)

Tbc(s1, . . . , sn) = {V (f) | f ∈ Tb(s1 × · · · × sn)} (2.39)
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where for any given M , the function fM : Cs1×···×sn → R is defined as

fM (x) =

{
1 if M = 0

H(x, PL(M))−H(x, PR(M)) otherwise
(2.40)

Theorem 2.9. The set Tb(s1, . . . , sn) is a basis set for the space of all trivial
conserved functions with energy windows of size s1 × · · · × sn.

Proof:
To prove Tb is a basis for the trivials, it is sufficient to show three things:

that every element of Tb is a trivial, that its elements are linearly independent,
and that the number of elements of Tb equals the dimensionality of the space
of trivials. Each of these will now be shown.

It is clear that each element of Tb is a trivial. One of them is the constant
function f(x) = 1, which is trivial because it assigns to each universe an
energy equal to the number of cells, independent of the state of those cells.
The rest of the functions are of the form f(x) = H(x, A) −H(x, B) where
tensors A and B are two different patterns formed by taking a smaller tensor
C and padding it on one or more sides with * symbols. If a universe state
contains n different (possibly overlapping) copies of the pattern C, then as f

is scanned over the entire universe, it will match A exactly n times and match
B exactly n times, yielding a total energy for the universe of n−n = 0. Thus
all universe states are given a total energy of zero regardless of the state, so
the function is trivial.

We will show that the functions in Tb are linearly independent by showing
that the vectors in Tbc are linearly independent. To check for linear indepen-
dence, the H function should first be expanded by summing over all possible
ways to replace each * symbol with a color from C. For example, in 2D with
the colors {0, 1}, the trivial:

f(x) = H(x, * 0 0 0 1
* 0 0 1 1)−H(x, 0 0 0 1 *

0 0 1 1 *) (2.41)

can be expanded as:

f(x) =H(x, 0 0 0 0 1
0 0 0 1 1) + H(x, 0 0 0 0 1

1 0 0 1 1) + H(x, 1 0 0 0 1
0 0 0 1 1 + H(x, 1 0 0 0 1

1 0 0 1 1)

−H(x, 0 0 0 1 0
0 0 1 1 0)−H(x, 0 0 0 1 0

0 0 1 1 1)−H(x, 0 0 0 1 1
0 0 1 1 0)−H(x, 0 0 0 1 1

0 0 1 1 1))
(2.42)

These are equivalent by the definition of the H function. If C contains k

colors, and x is a tensor with n elements, then there are kn possible patterns
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that can appear within the H function, and so each trivial can be represented
by a vector of kn coefficients. As in the earlier proof, we can prove these
trivials are linearly independent by assigning each possible vector a name, and
assigning each position within the vector a name, and choosing an ordering
over names, such that vector A has a nonzero in position A and has zeros in
all earlier elements.

It is natural to name each position in the vector by the tensor that is
inside H for that position. Since Tb is defined to have a trivial for each
M ∈ Z(s1, . . . , sn), it is natural to use that M as the name for each vector.
Let the ordering be an ordinary lexicographical ordering, where the elements
of a tensor are taken in row major order, and where 0 comes before all other
colors (which is the opposite convention as in the earlier proof).

If these choices of naming and ordering are applied to the example in equa-
tions (2.41) and (2.42), it is clear that the name of the trivial will equal the
tensor in the first term shown in equation (2.42), and the first coefficient (ac-
cording to the chosen ordering) is the same tensor. Therefore, it has the de-
sired properties. This will be true in general. The two tensors in (2.41) from
applying PL and PR to a zero-sided tensor M . Therefore, M can be recov-
ered by replacing the * elements in PL with zeros. That same tensor will
always appear as the first term (in the chosen ordering) in the expanded func-
tion. Clearly, the top row of (2.42) will always have its lexicographically-first
element being the one where all the * elements were replaced with zeros.
That is because the replacement of a * with a 0 will always come before
the replacement of a * with a nonzero. A similar argument shows that the
lexicographically-first tensor on the second row will also be first. And when
those two are compared, the one on the first row will always precede the one
on the second row, because the former is simply the latter shifted one space
to the right by inserting zeros on the left.

Thus the vectors have the property that the first nonzero element in each
vector is in the position whose name matches the name of the vector. There-
fore the vectors are linearly independent.

It remains only to show that the space spanned by the trivials in Tb has
the same dimensionality as the space of trivials. The dimensionality of the
space of energy functions equals the number of tensors the size of the energy
window, because each energy function is defined by a vector of coefficients,
with one coefficient per possible tensor. It was proved that a basis set for
the linear equations defining the trivials has the same number of equations
as there are non-zero-sided tensors. Therefore, the solution space for those
equations (i.e. the space of all trivials) must have a dimensionality that is
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equal to the number of possible tensors minus the number of non-zero-sided
tensors. This difference is simply the number of zero-sided tensors (because
the zero-sided and non-zero-sided tensors partition the set of all tensors).

Thus, Tb contains a number of trivials equal to the dimensionality of the
entire space of trivials. Since they are linearly independent, and are all triv-
ials, this proves that Tb is a basis set for the space of all trivials.

In [2], we defined comp as a function from matrices to matrices, such that
given a matrix T with c columns, the matrix comp(T ), called the complement
of matrix T , is a matrix with c columns, with the property that the rows of
comp(T ) are linearly independent of each other and of the rows of T , and
that together with the rows of T they span all of Rc.

A unit complement matrix is a complement matrix that has a single 1 on
each row, with all other elements zero. It was proved in that paper that if T

is a matrix formed from the equations defining the trivials, and if comp(T )
is a unit complement, then it is particularly useful. If C is the matrix of
coefficients of the equations defining the conserved functions, then we can
zero out (i.e., set all elements to zero) every column of C that corresponds to
a column with a 1 element in the unit complement comp(T ). The resulting set
of equations will have a solution that spans only a subset of the space of the
nontrivials. But the union of that solution with the trivials will span exactly
the space of all conserved functions. See [2] for the proofs of all those results.

This modified C matrix is extremely useful for empirical searches. The
zeroed columns can be deleted before having the computer solve the system
of equations, and the zeros can be inserted back in to the resulting answer.
So the matrix to solve will be smaller. In fact it is only half the size, for a
binary 1D CA. More importantly, if we want to know whether a given CA
has any nontrivials, we can simply check whether the modified C is full rank.
If it is, then no nontrivials exist. This allows for faster searches for CAs with
nontrivials of a given size,

To use that result, we need to know the unit complement matrix in general.
The earlier papers gave them only for 1D universes with 2 colors. The follow-
ing theorem gives a unit complement matrix for the trivials for any universe
with any arbitrary, finite number of dimensions, with any arbitrary number of
colors, and any arbitrary energy window size. This was used in our exhaus-
tive search of Life and of all the life-like CAs discussed in the next section.
This search would have been impractically slow if we had not known the unit
complement matrices in 2D, and used them to optimize our search.

Theorem 2.10. The set of rows of a unit complement of the matrix of coeffi-
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cient vectors for the equations defining the trivials for energy windows of size
s1×, . . . ,×sn is {Vt(M) |M ∈ Z}.

Proof: For the proposed matrix to be a complement matrix, its rows must
be vectors that are linearly independent of each other, and are not in the
space spanned by the trivials, and that together with the trivials span the en-
tire space. To be a unit complement, they must have a 1 on each row, in a
different position, with the rest zeros.

It is obvious that if the proposed set is a complement matrix then it will be
a unit complement matrix, since by the definition of Vt, each vector consists
of all zeros and a single 1, and the 1 is in a different location for each vector.
This also guarantees that the rows of the matrix are linearly independent.

It is also obvious that each of these vectors is outside the space spanned
by the trivials. That is because each vector in the proposed set corresponds to
an energy function of the form f(x) = H(x, M) for some M in Z . Such a
function will assign an energy to a universe equal to the number of copies of
M in that universe’s state, and so is not trivial, so its vector is not within the
space spanned by the trivials.

Finally, it must be shown that the dimensionality of this space plus the di-
mensionality of the space of trivials equals the dimensionality of the space of
all energy functions. The dimensionality of these three spaces clearly equals
the sizes of the sets Z , Z̄ , and B, respectively. Since the size of the last is the
sum of the sizes of the first two, the desired relationship holds. Therefore, the
theorem is proved.

Figure 1 summarizes all the theorems of this paper, giving four examples
of the M matrix for each concept.

3 COMPUTATIONAL RESULTS FOR LIFE-LIKE CA’S

The challenge in identifying cellular automata with nontrivial conserved en-
ergy functions is the enumeration of the trivials and their elimination from the
solution space. The actual calculation of the nontrivials can then be reduced
to the calculation of the null space of the system of corresponding state space
equations. Thus the theorems and definitions of the previous section may be
used as the basis for computational identification of cellular automata with
nontrivials of various orders. Computationally, this proceeds as follows:

1) Choose a CA and energy window size (s1, s2).
2) For all possible matrices M given by Theorem 2.7, generate the corre-

sponding state space equations.
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Energy window matrix
Size: r × c
Count: krc

10010
00000
00100

01010
10101
01010

11111
11111
11111

00000
00000
00000

Zero-sided matrix
Size: r × c
Count:
N(r, c) =k

(r−1)c
+ k

r(c−1)

−k
(r−1)(c−1)

01111
00101
00100

00000
10111
00001

00000
01000
01010

00000
00000
00000

Unit complement function
Size: r × c
f(x) = H(x, M)

01111
00101
00100

00000
10111
00001

00000
01000
01010

00000
00000
00000

Trivial conserved function
Size: r × c
f(x) = H(x, M)−H(x, M

′
)

M =

*1111
*0101
*0100

M
′
=

1111*
0101*
0100*

M =

*****
10111
00001

M
′
=

10111
00001
*****

M =

*****
*1000
*1010

M
′
=

1000*
1010*
*****

f(x) = 1

Non-zero-sided matrix
Size: r × c
Count: krc −N(r, c)

01000
10000
10001

10000
11000
00000

10111
00000
00000

10000
00000
00000

Equations defining the
trivial conserved functions
Size: (2r − 1)× (2c− 1)
0 = e(M)− e(M ′)

010000000
100000000
100010000
000000000
000000000

000000000
000100000
000110000
000000000
000000000

000000000
000000000
101110000
000000000
000000000

000000000
000000000
000010000
000000000
000000000

Non-zero-sided matrix
Size: (r + 2)× (c + 2)
Count:
k(r+2)(c+2) −N(r + 2, c + 2)

0 0 0 0 1 0 1
0 0 0 0 0 1 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0

1 0 0 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 0 0

1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Equations defining
the conserved functions
Size: (2r + 3)× (2c + 3)
0 =e(M)− e(M

′
)

−e(s(M)) + e(s(M
′
))

0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

FIGURE 1
Summary of the main theoretical results of this paper, with four examples of each concept. The
proofs are for arbitrary dimensions, neighborhood sizes, and number of colors, but the figure
shows only 2D examples, for a CA with a 3 × 3 neighborhood, and k = 2 colors. In each
case, M ′ is M with the central bit set to 0. For the equations, the large matrix is formed by
padding the small matrix with zeros such that the last 1 bit ends up in the center of the large
matrix (where “last” is the last 1 found when traversing the elements in row major order). In
each of the four sections, the listed concepts all have the same count. For example, the number
of zero-sided matrices of a given size equals the number of unit complement functions, which
equals the number of trivials. 27



3) To remove the trivials from the solution space, delete the columns asso-
ciated with the zero-sided tensors as determined by Theorem 2.10. This has
the additional benefit of significantly reducing the size of the energy vectors
and, therefore, the state space matrix as a whole.

4) Determine the rank of the resulting matrix. If it is full rank, the system
of equations has no solution, and therefore no nontrivial exists for the given
CA and window size. If the matrix is rank-deficient, a nontrivial exists. It
is completely characterized by the basis vectors that are the columns of the
matrixs null space.

In [2], we gave a complete taxonomy of nontrivials for 1D, 2-state cel-
lular automata for energy windows up to size 16. Using the definitions and
theorems previously presented, we now extended these results to 2D, 2-state
automata, for energy windows up to size 9.

There are a total of k(k9) cellular automata in 2D with k colors. This
number is so large that any investigation other than a random sampling is
effectively impossible. Accordingly, drawing substantive conclusions about
unrestricted 2D cellular automata seems to the authors to be extraordinarily
difficult. To reduce the scope of the problem and make a more complete
investigation possible, we consider only life-like CA’s (i.e. 2-D, 2-color, 3×3
neighborhood, outer totalistic).

Restricting the search space to life-like CA’s significantly reduces the size
of the problem. For such a CA, a cell can have from 0 to 8 outer neighbors of
color 1, and as a function of that number the central cell can have one of four
outcomes on the next step: (S)ame, (B)irth, (D)eath, and (F)lip. S leaves its
color unchanged on the next step, B causes it to be set to alive (1), D causes
it to be set to 0, and F causes it to flip from 0 to 1 or from 1 to 0. Thus
any life-like CA can be represented as a string of characters from {S,B,D,F}.
Using this notation, if we count the neighbors from 0 to 8 from left to right,
Conway’s Game of Life would be written as “DDSBDDDDD”. We refer to
this description at the CA’s rule vector.

There are 49 life-like CA’s. It is known that renumbering the colors of a
CA in reverse order and changing the outcomes correspondingly produces an
CA identical to the original, up to isomorphism. Using the proposed notation,
this corresponds to reversing the order of the letters and swapping B with D.
The rule vector of every CA can be manipulated in this way to produce an
isomorph. Of these CA’s, 29 are their own isomorphs, so the total number
of isomorphism classes of life-like CAs is (49 − 29)/2 + 29 = 217 + 28 =
131, 328. This is considerably smaller than the non-life-like case.

The definitions and theorems in this paper give the dimensions of the ma-
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Energy window Energy window
height (s1) width (s2) dlog2 rowse dlog2 colse

1 2 16 1
1 3 19 2
1 4 23 3
2 2 20 4
1 5 26 4
1 6 29 5
2 3 25 6
1 7 32 6
1 8 35 7
2 4 29 8
1 9 39 8
3 3 30 9

TABLE 1
State matrix sizes for various energy windows

trices to be analyzed as a function of the energy window (independent of the
CA being analyzed). We show the matrix sizes for some 2D examples in
Table 1.

Column three shows the ceiling of the log base 2 of the maximum number
of energy vectors needed to determine the existence of a nontrivial. Column
four shows the ceiling of the log base 2 of the number of entries in each vector.
This number is given by the total number of possible energy function values
(2s1s2 ) minus the number of zero-sided tensors given by Definition 1.17.

Because these matrices have far more rows than columns, we might ex-
pect almost all of them to be full rank, and therefore few nontrivial conserved
functions should exist over the range of cellular automata. Our empirical
results were consistent with this. Full rank can be determined very quickly
while rank deficiency cannot be known until all the possible state space vec-
tors given by Theorem 2.7 have been examined for linear independence,so it
would be inefficient to build the full state space matrix for each CA and then
calculate its rank. Instead, we sift the sands of cellular automata through a
three-stage computational sieve.

The first stage uses a ”quick and dirty” algorithm to discard automata with
no nontrivials. This eliminates over 99% of the candidates. The second stage
takes automata that have passed the first stage and performs a little more work
to try to drive the set of state space matrices to full rank. This eliminates about
another 90% of the candidates it analyzes. The third stage operates only on
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automata that have passed the first two stages, performing exact arithmetic
using all the optimizations of Theorem 2.6 to determine whether or not a
given CA has a nontrivial conserved function. If it does, its basis is calculated
and reported. Each stage is implemented in MATLAB.

In stage I, we compute the energy vector of Definition 1.16 for one tensor
at a time, attempting to add it to an existing energy vector set via Gaussian
elimination to ensure that the rows in the state space matrix at any time are
always linearly independent. Before such addition, however, we delete the
columns corresponding to the zero-sided tensors for the indicated energy win-
dow. The total number of deleted columns is given by Definition 1.17. None
of the optimizations discussed in the proof of Theorem 2.6 are performed at
this stage. Instead, universe states are generated randomly, the energy vec-
tors of their corresponding tensors are calculated, and Gaussian elimination
is performed on each vector relative to those energy vectors already admit-
ted into the state space matrix. When the number of linearly independent
energy vectors is equal to the number of columns (the number of possible
energy function values minus the number of zero-sided tensors), full rank has
been achieved, and the (CA, energy window) pair under test is known not to
correspond to a nontrivial conserved function.

Since states are generated randomly in this stage, as opposed to exhaustive
enumeration of the appropriate tensors as given by Theorem 2.7, the number
of states N to try before giving up on the possibility of reaching full rank is
a user-definable parameter. Empirically, we have found that setting N to 32
times the maximum rank of the matrix gives a good tradeoff between quick
computation on the one hand and admitting too many false positives on the
other.

During this stage, all arithmetic is performed modulo a small prime, to
eliminate the possibility of roundoff error or overflow. If full rank is reached,
the matrix would be full rank in exact arithmetic as well, so the answer is
correct. If full rank is not reached within the indicated time window, the
matrix may or may not be rank-deficient, so the CA is marked as a candidate
for stage II computation.

In stage II, candidate (CA, window) pairs that pass through the first stage
are subject to repeated random state generation with a larger value of N for
multiple attempts. No other optimizations are performed at this time. If no
full rank matrix is produced (i.e. no linearly independent energy vector set
of the cardinality given by Definition 1.16 is found), the pair is marked for
analysis by stage III.

Stage III computation employs on-the-fly Gaussian elimination for one-
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at-a-time energy vector generation, similar to the first two stages, but using
integers in double precision arithmetic and enumerating the state space ex-
actly as described in the proof of Theorem 2.6. To keep the computations
from overflowing, vectors are reduced modulo the GCD of all their nonzero
entries during this process, which means this stage is the most computation-
ally intensive. If Gaussian elimination on the entire set of energy vectors does
not produce a linearly independent set of Definition 1.16 cardinality, then the
constructed state space matrix has a null space. That null space is calculated,
and reported as the basis for all nontrivial conserved functions for that partic-
ular (CA, window) combination.

To guard against the possibility of numerical error, the largest value ob-
served during stage III calculation is tracked and reported, to ensure that any
possibility of overflow or loss of precision will be detected. For all calcu-
lations reported here, this maximum value has always been well below that
which could induce error in double precision arithmetic. So we are confident
our results are correct. Nonetheless, as an added safety check, we have im-
plemented code which accepts as input a CA, an energy window, and a stage
III basis set reported as characterizing a nontrivial. It tests each vector in the
basis set over large numbers of randomly selected states by evaluating the
energy function through brute force dot product calculation. In all cases, the
resulting functions reported by stage III were conserved.

Table 2 shows the results of our computations for all life-like cellular au-
tomata up to isomorphism, for all energy functions up to order 9. It extends
[2] to give a complete list of conserved functions for all automata of this type.
Figures 2 and 3 are similar to Figure 5, extended to two dimensions. Figure 4
summarizes our current knowledge of the 1D conserved functions for the 256
elementary CA’s (1D, 2-state, 3-neighborhood).

We have shown by exhaustive search that some CAs have no nontrivials
up to order 16, though higher-order nontrivials might still exist for those CAs.
However, for some CAs, it is possible to prove that no nontrivials can exist of
any order. For example, that can be proved for the CAs {0, 8, 32, 40, 128, 136,
160, 168} based on their long-term behavior for universe states starting with
two adjacent 0 cells [1], and for {60, 90} based on their long-term behavior
for universes of a size that is a power of two [7].

In all cases, the basis functions shown in the figures were simplified using
a Mathematica program. The program simplified the basis functions as much
as it could, by combining terms using the * color, and by adding multiples of
trivial functions, to reduce the number of terms in each basis function. This
simplification process was heuristic, and so might be improved upon. But the
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results shown are probably close to being as simple as possible, at least for
those functions with few terms. It is an open question whether there is a much
simpler way to represent some of the more complex functions.

Every life-like CA that has nontrivials of order 9 or less is shown in Table
2. Each row gives results for one such CA. The column window gives the size
of the energy window, basis gives the number of basis functions that span
the space of conserved functions, CA# gives the number for the CA using the
standard numbering system used in Mathematica, iso gives the number for the
isomorphic CA (if any),and Rule describes the rule for the CA using a com-
mon notation that lists the number of active neighbors needed for an inactive
cell to become active (be Born), followed by the number of active neighbors
needed for an active cell to remain active (to Survive). The rule vector de-
scribes what happens to a cell when it has 0 through 8 neighbors that are alive
(set to 1). For each case, the letter indicates that the cell will be born (B), die
(D), remain the same (S), or flip to the opposite (F). Comments describes the
conserved function or lists another CA that has the same conserved function.

By symmetry, analogous conserved functions for any m × n window can
also be found for one that is n×m. Thus the only energy windows examined
were those that were at least as wide as they were tall.

4 ANALYSIS

Figure 5 applies the ideas of this paper to the results of [2] and [4], expressing
the basis functions as a linear sum of the matching H-functions of Definition
1.12.

Some patterns are clearly visible in Table 2, Figure 2, Figure 3 and Figure
4. For all life-like CA’s for which nontrivial conserved functions exist, there
is a great deal of homogeneity in the middle range of neighbor counts. For
example, any given CA in the table has the same transition rules for neighbor
counts 3-6, and most have identical transition rules for neighbor counts 2-7.
We conjecture this is combinatorially driven. That is, for the middle range
of neighbor counts, there are so many different ways to distribute a fixed
number of neighbors among eight cells that a low-order conserved function
cannot incorporate them all. By contrast, there is only one way to arrange
zero or eight neighbors around a cell, eight ways to arrange one or seven,
and so forth. Near the minimum and maximum of the neighbor count range,
the number of possible configurations is sufficiently small that a low-order
conserved function is more likely to emerge.

We also note that all life-like CA’s with rule vectors of the form xFFFFFFFx,
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window basis CA# Iso Rule rule vector (num neighbors) comments
0 1 2 3 4 5 6 7 8

1×1 1 174762 S0123456789 S S S S S S S S S identity, conserves all

1×2
1 174760 240298 S12345678 D S S S S S S S S conserves [11] pairs
1 87381 B012345678 F F F F F F F F F conserves [10] pairs

2×2

1 174730 178858 S01345678 S S D S S S S S S conserves 2x2 pattern with all 1’s
1 174728 244394 S1345678 D S D S S S S S S identical to 174730
1 174722 195242 S0345678 S D D S S S S S S identical to 174730
1 174720 260778 S345678 D D D S S S S S S identical to 174730
4 191144 240290 B7/S12345678 D S S S S S S B S
4 240288 256680 B8/S234567 D D S S S S S S B conserves 2x2 patterns with≥ 3 1’s
4 21847 B01234567/S0 B F F F F F F F D
4 21845 87383 B01234567 F F F F F F F F D Identical to 21847
5 174754 191146 S02345678 S D S S S S S S S conserves 2x2 patterns with≥ 3 1’s
5 174752 256682 S2345678 D D S S S S S S S identical to 174754
8 240296 B8/S12345678 D S S S S S S S B

2×3

1 152918 B1234567/S8 S F F F F F F F S
1 152919 21846 B01234567/S08 B F F F F F F F S identical to 152918
1 152916 218454 B1234567/S8 D F F F F F F F S identical to 152918
1 152917 87382 B01234567/S8 F F F F F F F F S identical to 152918

1 240291 60072 B08/S234567 B D S S S S S S B
conserves the difference
between [101 111] and [111 101]

1 240289 125608 B08/S2345678 F D S S S S S S B identical to 240291
1 256683 43680 B078/S012345678 B S S S S S S B B
1 256681 109216 B078/S12345678 F S S S S S S B B identical to 256683
1 218455 21844 B012345678/S08 B F F F F F F F B identical to 152918
1 218452 B12345678/S8 D F F F F F F F B identical to 152918
1 218435 87380 B012345678/S8 F F F F F F F F B identical to 152918
2 43691 B0/S01234567 B S S S S S S S D
2 43689 109227 B0/S1234567 F S S S S S S S D identical to 43691
2 109225 B08/S1234567 F S S S S S S S F Identical to 43691
7 240299 43688 B08/S012345678 B S S S S S S S B
7 240297 109224 B08/S12345678 F S S S S S S S B identical to 240299

3×3

1 196607 2 B01234567/S8 B B B B B B B B S conserves ring of 1’s around a 0
1 174783 2730 B012/S012345678 B B B S S S S S S
1 240303 10920 B018/S012345678 B B S S S S S S B conserves [001 011 010]
1 240295 27304 B018/S02345678 B F S S S S S S B identical to 240303
1 43695 10923 B01/S01234567 B B S S S S S S D identical to 240303
1 43687 27307 B01/S234567 B F S S S S S S D identical to 240303
1 109231 10921 B018/S01234567 F S S S S S S D D conserves [011 100 101]
1 109223 27305 B018/S0234567 B F S S S S S S F identical to 109231
9 60075 43683 B07/S01234567 B S S S S S S B D
9 125611 43681 B078/S01234567 B S S S S S S B F identical to 43683
9 60073 109219 B07/S1234567 F S S S S S S B D
9 60775 43683 B07/S01234567 B S S S S S S B D Identical to 43683

11 191145 109218 B07/S12345678 F S S S S S S B S

TABLE 2
Conserved functions of order ≤ 9 for life-like CA’s (i.e. 2D, 2-color, outer totalistic)
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CA Basis

174762 f(x) =H(x, 1 )

87381 f(x) =H(x, 1 0 )

174760 f(x) =H(x, 1 1 )

174720
174722
174728
174730

f(x) =H(x, 1 1
1 1

)

21845
21847

f1(x) = H(x, 0 1
1 *

)

−H(x, 1 1
0 *

)

f2(x) = H(x, 0 1
1 *

)

−H(x, 1 0
1 *

)

f3(x) = H(x, 0 1
1 1

)

−H(x, 1 *
1 0

)

−H(x, 1 1
0 0

)

f4(x) = H(x, 0 1
1 0

)

+H(x, 1 0
0 1

)

191144 f1(x) = H(x, 0 0
0 1

)

− H(x, 0 1
0 0

)

f2(x) = H(x, 0 0
0 1

)

− H(x, 0 0
1 0

)

f3(x) = H(x, 0 1
1 1

)

− H(x, 1 1
1 0

)

f4(x) = H(x, 0 1
1 *

)

+ H(x, * 1
1 1

)

− H(x, 1 0
0 1

)

+2H(x, 1 0
1 0

)

+2H(x, 1 1
0 0

)

CA Basis

240288f1(x) = H(x, 0 1
1 1

)

− H(x, 1 1
1 0

)

f2(x) = H(x, 0 1
1 1

)

− H(x, 1 1
0 1

)

f3(x) = H(x, 0 1
1 1

)

− H(x, 1 0
1 1

)

f4(x) = H(x, * 1
1 1

)

+3H(x, 0 1
1 1

)

240296f1(x) = H(x, 0 1
1 1

)

− H(x, 1 1
1 0

)

f2(x) = H(x, 0 1
1 1

)

− H(x, 1 1
0 1

)

f3(x) = H(x, 0 1
1 1

)

− H(x, 1 0
1 1

)

f4(x) = H(x, 1 1
0 0

)

f5(x) = H(x, 1 0
1 0

)

f6(x) = H(x, 1 0
0 1

)

f7(x) = H(x, * 1
1 1

)

+3H(x, 0 1
1 1

)

f8(x) = H(x, 0 1
1 0

)

CA Basis

174752
174754

f1(x) =H(x, 1 1
1 1

)

f2(x) =H(x, 1 1
1 0

)

f3(x) =H(x, 1 1
0 1

)

f4(x) =H(x, 1 0
1 1

)

f5(x) =H(x, 0 1
1 1

)

218453
218452
218455
152917
152916
152919
152918

f(x) = H(x, 0 1 0
1 0 1

)

+H(x, 1 0 1
0 1 0

)

256681
256683
191145

f(x) = H(x, 0 0 *
1 0 1

)

+H(x, 1 0 0
1 0 1

)

−H(x, 1 0 1
0 0 *

)

−H(x, 1 0 1
1 0 0

)

240289
240291

f(x) = H(x, 1 0 1
1 1 1

)

−H(x, 1 1 1
1 0 1

)

109225
43689
43691

f1(x) =H(x, 1 0 1
0 1 0

)

f2(x) =H(x, 0 1 0
1 0 1

)

240297
240299

f1(x) = H(x, 1 0 1
1 1 1

)

−H(x, 1 1 1
1 0 1

)

f2(x) = H(x, 1 1 0
1 0 1

)

f3(x) = H(x, 1 0 1
1 1 0

)

f4(x) = H(x, 1 0 1
0 1 1

)

f5(x) = H(x, 1 0 1
0 1 0

)

f6(x) = H(x, 0 1 1
1 0 1

)

f7(x) = H(x, 0 1 0
1 0 1

)

FIGURE 2
2D Basis functions for life-like CA’s. For each CA, this lists the lowest-order non-
trivial conserved functions. The functions are simplified in some cases by rewriting
in terms of *, and by linear combinations with some of the trivials. The given func-
tions, combined with the trivials, constitute a basis set for the space of all conserved
functions for that CA. The table contains all of the non-isomorphic, life-like CAs that
have nontrivials of size 2× 3 or smaller (the 3× 3 nontrivials are shown in Figure 3).
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CA Basis

109223
109231
43687
43695
240295
240303

f(x) =H(x, 0 1 0
1 0 1
0 1 0

)

196607 f(x) =H(x, 1 1 1
1 0 1
1 1 1

)

125609
125611
60075

f1(x) =H(x, 1 0 1
0 1 0
1 0 1

)

f2(x) =H(x, 1 0 1
0 1 0
1 0 0

)

f3(x) =H(x, 1 0 1
0 1 0
0 0 1

)

f4(x) =H(x, 1 0 1
0 1 0
0 0 0

)

f5(x) =H(x, 1 0 0
0 1 0
1 0 1

)

f6(x) =H(x, 1 0 0
0 1 0
1 0 0

)

f7(x) =H(x, 0 0 1
0 1 0
1 0 1

)

f8(x) =H(x, 0 0 1
0 1 0
0 0 1

)

f9(x) =H(x, 0 0 0
0 1 0
1 0 1

)

60073 f1(x) =H(x, * 0 *
0 1 0
1 0 1

)

f2(x) =H(x, * 0 1
0 1 0
* 0 1

)

f3(x) =H(x, 1 0 1
0 1 0
1 0 1

)

f4(x) =H(x, 1 0 1
0 1 0
1 0 0

)

f5(x) =H(x, 1 0 1
0 1 0
0 0 1

)

f6(x) =H(x, 1 0 1
0 1 0
0 0 0

)

f7(x) =H(x, 1 0 0
0 1 0
1 0 1

)

f8(x) =H(x, 1 0 0
0 1 0
1 0 0

)

f9(x) =H(x, 0 0 1
0 1 0
1 0 1

)

CA Basis

174783f(x) = H(x, 0 0 0
0 0 1
0 0 1

)+H(x, 0 0 0
0 0 1
0 1 0

)+ H(x, 0 0 0
* 0 1
1 1 1

)− H(x, 0 0 0
1 0 0
0 1 1

)

− H(x, 0 0 *
1 0 0
1 0 *

)−H(x, 0 0 0
1 0 0
1 1 0

)+ H(x, * 0 0
1 0 1
1 0 0

)− H(x, 0 0 1
0 0 0
1 0 1

)

− H(x, 0 0 1
0 0 *
1 1 0

)+H(x, 0 0 1
* 0 *
1 1 1

)− H(x, 0 0 1
0 0 1
0 * 0

) − 2H(x, 0 0 1
0 0 1
1 0 0

)

− H(x, 0 0 1
1 0 0
0 0 1

)−H(x, 0 0 1
1 0 *
* 1 0

)− H(x, 0 * 1
1 0 0
1 0 0

) − 2H(x, 0 0 1
1 0 1
0 0 0

)

+2H(x, 0 1 *
0 0 0
0 1 0

)−H(x, 0 1 1
0 0 0
0 * 0

)− H(x, 0 1 0
0 0 0
1 0 1

)− H(x, * 1 0
0 0 1
1 0 0

)

− H(x, * 1 *
* 0 1
1 1 0

)−H(x, 0 1 0
* 1 0
* 1 0

)− H(x, 0 1 0
0 1 1
* 1 *

)− H(x, 0 1 *
1 0 *
0 0 *

)

− H(x, 0 1 0
1 0 0
0 0 1

)−H(x, 0 1 *
1 0 0
0 1 1

)− H(x, 0 1 *
1 * 0
1 0 *

)− H(x, 0 1 0
1 0 0
1 0 *

)

− H(x, 0 1 *
1 0 0
1 0 0

)−H(x, 0 1 1
1 * 0
* 0 0

)− H(x, 0 1 0
1 0 1
0 0 0

)− H(x, 0 1 *
1 0 1
0 1 *

)

− H(x, * 1 *
1 0 1
1 0 1

)−H(x, 0 1 *
1 1 0
0 0 *

)− H(x, 0 1 1
0 * 0
1 0 0

)− H(x, 0 1 1
0 0 0
1 0 0

)

− H(x, 0 1 1
0 1 0
0 0 0

)−H(x, * 1 1
0 1 1
* 1 0

)− H(x, 0 1 1
1 0 0
0 0 0

)+ H(x, 0 1 1
1 0 1
1 0 0

)

+ H(x, 0 1 1
1 1 1
* 1 1

)−H(x, 1 0 0
0 0 0
0 1 1

) − 2H(x, 1 * *
0 0 *
1 0 *

)− H(x, 1 0 0
0 0 0
1 0 1

)

− H(x, 1 0 0
0 0 0
1 1 *

)−H(x, 1 0 *
* 0 *
1 1 0

)− H(x, 1 0 1
* 0 *
* 1 0

)− H(x, 1 0 *
0 0 1
1 0 0

)

− H(x, 1 0 1
0 0 1
* 0 0

)−H(x, 1 0 1
* 0 1
0 0 0

)+ H(x, 1 0 0
1 0 0
0 0 0

)− H(x, 1 * *
1 0 0
1 0 0

)

− H(x, 1 0 *
1 0 1
0 0 0

)−H(x, 1 0 1
0 0 0
0 0 1

)− H(x, 1 0 1
0 0 0
1 0 *

) − 2H(x, 1 0 1
1 0 0
* * *

)

− H(x, 1 0 1
1 0 0
* 0 *

)+H(x, 1 1 0
0 0 0
0 0 0

)− H(x, 1 1 *
0 0 0
0 1 1

)− H(x, 1 1 1
0 0 *
1 * *

)

− H(x, 1 1 0
0 0 0
1 0 *

)+H(x, 1 1 0
* 0 1
0 0 1

)− H(x, 1 1 *
0 0 1
0 1 *

)− H(x, 1 1 *
0 1 *
0 0 *

)

− H(x, 1 1 1
0 1 *
* 0 *

)+H(x, 1 1 0
0 1 0
* 1 1

)+ H(x, 1 1 0
1 0 0
0 1 0

) − 2H(x, 1 1 *
1 0 0
1 0 *

)

− H(x, 1 1 1
* * 0
* 0 0

)−H(x, 1 1 1
* 0 0
* 0 0

)− H(x, 1 1 1
1 0 1
1 0 1

)+ H(x, 1 1 0
1 1 0
0 1 1

)

− H(x, 1 1 0
1 1 0
1 1 0

)+H(x, 1 1 0
1 1 1
0 * *

)+ H(x, 1 1 0
1 1 1
1 0 *

)− H(x, 1 1 1
0 0 *
0 1 *

)

− H(x, 1 1 1
1 0 0
0 1 1

)−H(x, 1 1 1
1 0 *
1 1 *

)− H(x, 1 1 1
1 0 1
0 1 *

)− H(x, 1 1 1
1 1 0
0 0 *

)

− H(x, 1 1 1
1 1 0
1 * *

)+H(x, 1 1 1
1 1 1
0 1 1

)− H(x, 1 1 1
1 1 1
1 1 0

)

FIGURE 3
2D Basis functions (continued). The 3× 3 nontrivials, continued from figure 2.

35



Order CA(isomorphs) Rule 1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

∞ 0(255) 0 0 0 0 0 0 0 0 0
∞ 8(64,239,253) Xyz 0 0 0 0 1 0 0 0
∞ 30(86,135,149) X+YZ 0 0 0 1 1 1 1 0
∞ 32(251) xYz 0 0 1 0 0 0 0 0
∞ 40(96,235,249) xz+yz 0 0 1 0 1 0 0 0
∞ 60(102,153,195) x+y 0 0 1 1 1 1 0 0
∞ 90(165) x+z 0 1 0 1 1 0 1 0
∞ 106(120,169,225) xy+z 0 1 1 0 1 0 1 0
∞ 128(254) xyz 1 0 0 0 0 0 0 0
∞ 136(192,238,252) yz 1 0 0 0 1 0 0 0
∞ 150 x+y+z 1 0 0 1 0 1 1 0
∞ 154(166,180,210) xY+z 1 0 0 1 1 0 1 0
∞ 160(250) xz 1 0 1 0 0 0 0 0
∞ 168(224,234,248) XYz+z 1 0 1 0 1 0 0 0
>16 6(20,159,215) Xy+Xz 0 0 0 0 0 1 1 0
>16 9(65,111,125) Xy+XZ 0 0 0 0 1 0 0 1
>16 13(69,79,93) X+XYz 0 0 0 0 1 1 0 1
>16 18(183) xY+Yz 0 0 0 1 0 0 1 0
>16 22(151) X+Xyz+YZ 0 0 0 1 0 1 1 0
>16 25(61,67,103) Xyz+YZ 0 0 0 1 1 0 0 1
>16 26(82,167,181) xYZ+Xz 0 0 0 1 1 0 1 0
>16 28(70,157,199) Xy+xYZ 0 0 0 1 1 1 0 0
>16 37(91) xYz+XZ 0 0 1 0 0 1 0 1
>16 41(97,107,121) X+XyZ+Yz 0 0 1 0 1 0 0 1
>16 45(75,89,101) X+Yz 0 0 1 0 1 1 0 1
>16 54(147) XZ+Y 0 0 1 1 0 1 1 0
>16 57(99) Xz+Y 0 0 1 1 1 0 0 1
>16 58(114,163,177) xY+Xz 0 0 1 1 1 0 1 0
>16 62(118,131,145) x+XYz+y 0 0 1 1 1 1 1 0
>16 74(88,173,229) xyZ+Xz 0 1 0 0 1 0 1 0
>16 78(92,141,197) Xz+yZ 0 1 0 0 1 1 1 0
>16 105 x+y+Z 0 1 1 0 1 0 0 1
>16 110(124,137,193) Xyz+y+z 0 1 1 0 1 1 1 0
>16 122(161) x+xYz+z 0 1 1 1 1 0 1 0
>16 126(129) xY+Xz+yZ 0 1 1 1 1 1 1 0
>16 130(144,190,246) xz+Yz 1 0 0 0 0 0 1 0
>16 134(148,158,214) X+XYZ+yz 1 0 0 0 0 1 1 0
>16 146(182) x+xyZ+Yz 1 0 0 1 0 0 1 0
>16 152(188,194,230) xYZ+yz 1 0 0 1 1 0 0 0
>16 156(198) xZ+y 1 0 0 1 1 1 0 0
>16 162(176,186,242) Xyz+z 1 0 1 0 0 0 1 0
1 170(240) z 1 0 1 0 1 0 1 0
1 184(226) xY+yz 1 0 1 1 1 0 0 0
1 204 y 1 1 0 0 1 1 0 0

Order CA(isomorphs) Rule 1
1
1

1
1
0

1
0
1

1
0
0

0
1
1

0
1
0

0
0
1

0
0
0

2 12(68,207,221) Xy 0 0 0 0 1 1 0 0
2 14(84,143,213) X+XYZ 0 0 0 0 1 1 1 0
2 15(85) X 0 0 0 0 1 1 1 1
2 34(48,187,243) Yz 0 0 1 0 0 0 1 0
2 35(49,59,115) xYZ+Y 0 0 1 0 0 0 1 1
2 42(112,171,241) xyz+z 0 0 1 0 1 0 1 0
2 43(113) xY+Xz+YZ 0 0 1 0 1 0 1 1
2 51 Y 0 0 1 1 0 0 1 1
2 140(196,206,220) xyZ+y 1 0 0 0 1 1 0 0
2 142(212) xy+Xz+yZ 1 0 0 0 1 1 1 0
2 200(236) XyZ+y 1 1 0 0 1 0 0 0
3 2(16,191,247) XYz 0 0 0 0 0 0 1 0
3 3(17,63,119) XY 0 0 0 0 0 0 1 1
3 4(223) XyZ 0 0 0 0 0 1 0 0
3 10(80,175,245) Xz 0 0 0 0 1 0 1 0
3 56(98,185,227) xY+Xyz 0 0 1 1 1 0 0 0
3 76(205) xyz+y 0 1 0 0 1 1 0 0
3 138(174,208,244) xYz+z 1 0 0 0 1 0 1 0
3 172(202,216,228) Xy+xz 1 0 1 0 1 1 0 0
4 1(127) XYZ 0 0 0 0 0 0 0 1
4 11(47,81,117) X+XyZ 0 0 0 0 1 0 1 1
4 27(39,53,83) Xz+YZ 0 0 0 1 1 0 1 1
4 29(71) Xy+YZ 0 0 0 1 1 1 0 1
4 38(52,155,211) XyZ+Yz 0 0 1 0 0 1 1 0
4 46(116,139,209) Xy+Yz 0 0 1 0 1 1 1 0
4 72(237) xy+yz 0 1 0 0 1 0 0 0
5 5(95) XZ 0 0 0 0 0 1 0 1
5 19(55) xYz+Y 0 0 0 1 0 0 1 1
5 24(66,189,231) xYZ+Xyz 0 0 0 1 1 0 0 0
5 36(219) xYz+XyZ 0 0 1 0 0 1 0 0
5 108(201) xz+y 0 1 1 0 1 1 0 0
5 132(222) xy+yZ 1 0 0 0 0 1 0 0
6 23 xY+XZ+Yz 0 0 0 1 0 1 1 1
6 50(179) XYZ+Y 0 0 1 1 0 0 1 0
6 77 xy+XZ+yz 0 1 0 0 1 1 0 1
6 178 xy+xZ+Yz 1 0 1 1 0 0 1 0
6 232 xy+xz+yz 1 1 1 0 1 0 0 0
8 44(100,203,217) Xy+xYz 0 0 1 0 1 1 0 0
8 73(109) X+XYz+yZ 0 1 0 0 1 0 0 1
9 7(21,31,87) X+Xyz 0 0 0 0 0 1 1 1
12 33(123) xY+YZ 0 0 1 0 0 0 0 1
13 164(218) XyZ+xz 1 0 1 0 0 1 0 0
14 94(133) x+XyZ+z 0 1 0 1 1 1 1 0
14 104(233) x+xYZ+yz 0 1 1 0 1 0 0 0

FIGURE 4
Summary of results for the elementary CAs (i.e. 1D, 2-color, neighborhood of 3 cells).
In each half of the table, the first column gives the energy window size for the smallest
nontrivial. A value of ∞ indicates that it is known no nontrivial can exist. A value
of > 16 indicates that no nontrivial exists with energy window of size 16 or below,
but it is unknown whether larger ones exist. The next column has the CA rule number
(with isomorphs in parentheses). The next is the formula for the successor function,
where cells have state 0 or 1, three consecutive cells are called x, y, z (with capitalized
inverses, so X=1-x etc.), and the formula modulo 2 gives the new state for y. Finally,
the successor function is shown graphically, giving the new state as a function of the
state in that cell and its immediate neighbors (shown at the top of the column).
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CA Basis

170
184
204

f(x) =H(x, 1 )

12
14
15
34
35
42
43
51
140
142

f(x) =H(x, 1 0 )

200 f(x) =H(x, 1 1 )

2
3
172

f(x) =H(x, 1 0 0 )

4 f(x) =H(x, 0 1 0 )

10 f(x) =H(x, 1 * 0 )

56
76

f(x) = H(x, * 1 0 )
+H(x, 1 1 0 )

138 f(x) = H(x, 1 0 0 )
+H(x, 1 1 * )

1 f(x) =H(x, 1 0 0 0 )

11
27

f(x) = H(x, 1 0 0 * )
+H(x, 1 0 1 1 )

29 f(x) = H(x, * 1 0 0 )
+H(x, 1 1 0 0 )
+H(x, 1 0 1 * )

38
46

f(x) = H(x, 1 0 0 * )
+H(x, 1 1 0 1 )

72 f(x) =H(x, 0 1 1 0 )

5 f1(x) = H(x, 0 1 0 * 1 )
+2H(x, 1 0 * 0 * )
− H(x, 1 0 1 0 * )
+ H(x, 1 0 0 1 0 )

f2(x) = H(x, 1 * 0 * 0 )

19 f(x) = H(x, 1 0 1 0 0 )
+H(x, 1 1 0 0 * )

CABasis

24 f(x) = H(x, 1 0 0 0 * )
+H(x, 1 0 0 1 0 )
+H(x, 1 1 0 1 * )
+H(x, 1 1 1 0 0 )

36 f(x) = H(x, 0 0 1 0 0 )
+H(x, 1 1 0 1 1 )

108f(x) = H(x, * 0 1 0 0 )
+ H(x, 1 0 1 0 0 )
+ H(x, 1 0 1 1 1 )
+2H(x, 1 1 0 0 * )
+ H(x, 1 1 1 0 1 )

132f(x) =H(x, 0 1 0 1 0 )

23 f(x) = H(x, 0 0 1 1 0 0 )
+H(x, 1 1 0 0 1 1 )

50
178

f(x) = H(x, 0 1 1 0 0 1 )
+H(x, 1 0 0 1 1 0 )

77 f1(x) =H(x, 0 1 1 0 0 1 )

f2(x) =H(x, 1 0 0 1 1 0 )

232f1(x) = H(x, 0 1 1 0 0 0 )
−H(x, 1 0 1 1 0 0 )
+H(x, 1 1 0 0 1 0 )
−H(x, 1 1 1 0 0 1 )

f2(x) = H(x, 1 1 0 0 1 1 )

44 f(x) = H(x, 1 0 0 0 * * * * )
+H(x, 1 0 1 0 0 1 * * )
+H(x, 1 0 1 0 1 1 0 1 )
+H(x, 1 0 1 1 1 0 1 * )
+H(x, 1 1 0 0 1 * * * )
+H(x, 1 1 1 1 0 1 * * )

73 f(x) =H(x, 0 1 1 0 0 1 1 0 )

7 f(x) = H(x, 0 0 0 1 1 0 0 0 * )
+H(x, 0 0 0 1 1 0 0 1 0 )
+H(x, * 0 1 1 0 0 0 1 1 )
+H(x, * 1 1 0 0 1 0 1 1 )
+H(x, 1 1 1 0 0 0 1 1 * )

CABasis

33 f(x) = H(x, 0 0 0 1 0 0 0 1 0 0 * * )
− H(x, 0 0 0 1 0 0 0 1 0 0 1 * )
+2H(x, 0 0 0 1 0 0 0 1 1 * * * )
− H(x, 0 0 0 1 0 0 0 1 1 1 * * )
− H(x, 0 0 0 1 0 0 0 1 1 0 0 * )
− H(x, 0 0 0 1 0 0 0 1 1 0 1 0 )
+ H(x, 0 0 0 1 0 1 1 0 0 0 1 1 )
+ H(x, 0 0 0 1 0 1 1 1 0 1 1 1 )
+ H(x, 0 0 0 1 1 0 1 0 0 1 * * )
+2H(x, * 0 0 1 1 0 1 1 0 0 0 0 )
− H(x, 1 0 0 1 1 0 1 1 0 0 0 0 )
+ H(x, 0 0 0 1 1 0 1 1 0 0 1 * )
+ H(x, 0 0 0 1 1 0 1 1 1 0 0 * )
+ H(x, 0 0 0 1 1 0 1 1 1 0 1 0 )
+ H(x, 0 0 0 1 1 0 1 1 1 1 * * )
+ H(x, 0 0 1 0 0 0 1 1 0 1 0 0 )
+ H(x, 0 * 1 0 1 1 0 0 0 1 0 0 )
+ H(x, 0 * 1 0 1 1 1 0 1 0 0 1 )
+ H(x, 0 * 1 0 1 1 1 0 1 1 0 0 )
+3H(x, 0 0 1 1 0 1 1 0 0 0 1 * )
− H(x, 0 0 1 1 0 1 1 0 0 0 1 0 )
+ H(x, 0 0 1 1 0 1 1 1 0 1 0 0 )
+3H(x, 0 0 1 1 0 1 1 1 0 1 1 * )
− H(x, 0 0 1 1 0 1 1 1 0 1 1 0 )
+ H(x, 1 0 0 1 0 0 0 1 0 0 0 * )
+ H(x, 1 0 0 1 0 0 0 1 1 0 1 1 )
+2H(x, 1 0 0 1 0 1 1 0 0 0 * * )
− H(x, 1 0 0 1 0 1 1 0 0 0 0 * )
− H(x, 1 0 0 1 0 1 1 0 0 0 1 0 )
+ H(x, 1 0 0 1 0 1 1 1 0 1 0 0 )
+2H(x, 1 0 0 1 0 1 1 1 0 1 1 * )
− H(x, 1 0 0 1 0 1 1 1 0 1 1 0 )
− H(x, 1 0 0 1 1 0 1 1 0 0 0 1 )
− H(x, 1 0 0 1 1 0 1 1 1 0 1 1 )
+ H(x, 1 0 1 1 0 1 1 0 0 0 1 1 )
+ H(x, 1 0 1 1 0 1 1 1 0 1 1 1 )
+ H(x, 1 1 0 0 0 1 0 0 0 * * * )
+ H(x, 1 1 0 0 0 1 1 0 1 0 0 * )
+ H(x, 1 1 0 0 0 1 1 0 1 1 * * )
+2H(x, 1 1 1 0 1 1 0 0 0 * * * )
− H(x, 1 1 1 0 1 1 0 0 0 0 * * )
− H(x, 1 1 1 0 1 1 0 0 0 1 0 1 )
+2H(x, 1 1 1 0 1 1 1 0 1 0 0 * )
− H(x, 1 1 1 0 1 1 1 0 1 0 0 0 )
+2H(x, 1 1 1 0 1 1 1 0 1 1 * * )
− H(x, 1 1 1 0 1 1 1 0 1 1 0 1 )

164f(x) = H(x, 0 0 1 0 0 1 0 0 1 0 0 * * )
+H(x, 0 1 1 0 1 1 0 1 1 0 1 1 0 )

94 f(x) = H(x, 0 1 1 1 0 0 1 0 1 1 1 1 0 1 )
+H(x, 1 0 1 0 0 1 0 1 1 1 1 0 1 * )
+H(x, 1 0 1 1 1 1 0 1 0 0 1 0 1 * )
+H(x, 1 0 1 1 1 1 0 1 0 0 1 1 1 0 )

104f1(x) = H(x, 0 0 1 0 1 0 1 1 0 1 0 1 0 0 )
+H(x, 0 0 1 0 1 1 1 1 0 1 0 0 * * )
+H(x, 0 0 1 1 0 0 1 1 0 0 0 * * * )
+H(x, 0 0 1 1 0 0 1 1 0 0 1 0 * * )
+H(x, 0 0 1 1 0 0 1 1 0 0 1 1 0 1 )
+H(x, 0 0 1 1 0 0 1 1 0 0 1 1 1 * )

f2(x) = H(x, 0 0 1 1 0 0 1 1 0 0 1 1 0 0 )

FIGURE 5
1D Basis functions. For each CA, this lists the lowest-order nontrivial conserved
functions. The given functions, combined with the trivials, constitute a basis set for
the space of all conserved functions for that CA. Of the 88 isomorphic classes for
elementary CAs, the 47 listed are all that have nontrivials of size 16 or less.
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xSSSSSSSB, and xDSSSSSSB have nontrivial conserved functions. All CA’s
of the form xSSSSSSSx have a nontrivial as well, unless exactly one of the
x’s is ’S’.

Finally, our results show that all known nontrivials for life-like CAs cor-
respond to energy windows for which the width and the height differ by no
more than one. Whether this holds true for all larger nontrivials on life-like
CA’s remains an open question.

5 THE GAME OF LIFE

Because of the special significance of Conway’s Game of Life (rule B3/S23,
rule vector DDSBDDDDD), we have examined it for nontrivial conserved
energy functions up to order 13. We verified by exhaustive search that none
exist up to that size.

6 CONCLUSIONS AND FUTURE WORK

Table 2 and Figures 2 through 4 represent a complete list of basis sets for
all known nontrivial conserved functions for elementary and life-like cellular
automata up to isomorphism. We have discussed some of the patterns we
have observed.

We previously defined the notion of core nontrivials [2], recognizing that
cellular automata could exhibit different nontrivials of higher orders that are
not simple extensions of lower ones. We have yet to apply this idea to the
life-like automata shown here. Thus the functions we report are only the first
core nontrivials found for each CA. So for each elementary or life-like CA,
we give the complete basis set for all nontrivials of the minimum order for
which nontrivials exist.

Number-conserving 1D cellular automata [3] are automata with transition
rules that conserve the sum of the states in a neighborhood. That sum is
one kind of conserved energy function as defined in defined in Definition
1.10, where the function is simply the sum of all terms in the window. Our
work therefore includes number-conserving as a special case. The theory
described here applies to all cellular automata with finite states and arbitrary
dimensionality. The results for 2D automata are all new.

Continuing improvements in computing power and further refinements of
our code should enable us to identify nontrivials at increasingly higher orders.
The existence of nontrivials for m × n energy windows with |m − n| > 1
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remains an open question. Higher dimensional CAs, non-totalistic CAs, and
k-colored CAs could also be explored.

As yet, an elegant, unifying description of cellular automata relating their
decision rules and a given energy window to a nontrivial conserved function
remains elusive. While the general problem of whether a CA has any nontriv-
ials of any size is undecidable [5], we have mapped out the space for lower
orders and life-like CAs well enough to suggest some ideas for a more ele-
gant classification scheme than the present ad hoc one we are currently forced
to adopt. Such a scheme may in fact exist, or it may remain forever elusive,
an fundamentally complex property inherent in the nature of computational
automata. We hope further work may yet resolve this question.
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